(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

1. A function f(x) is said to be monotonic increasing in A if for all x1, x2 ∈ A, x1≤x2 implies f(x1)≤f(x2).

Prove that if f(x) is monotonic increasing in R [f: R→R] and c is a cluster point of R then the limit of f(x) as x→c[tex]^{-}[/tex] exists (might be +∞).

2. s(δ) = sup{f(x) :0<|x-c|<δ}

s(δ) is a monotonic decreasing function, hence based on previous result 1, lims(δ) as δ→0[tex]^{+}[/tex] = L[tex]^{+}[/tex], which is defined to be the limsupf(x) as x→c.

Prove:

A. If L[tex]^{+}[/tex] = limsupf(x) as x→c, then [tex]\exists[/tex] a sequence x[tex]_{n}[/tex], such that as x[tex]_{n}[/tex]→c, f(x[tex]_{n}[/tex])→L[tex]^{+}[/tex].

B. If x[tex]_{n}[/tex]→c and x[tex]_{n}[/tex]≠c and f(x[tex]_{n}[/tex])→L then L≤L[tex]^{+}[/tex].

C. Similarly define L[tex]^{-}[/tex] = liminff(x) as x→c. [This is a monotonic increasing function.]

Prove that limf(x) as x→c = L if and only if L[tex]^{+}[/tex] = L[tex]^{-}[/tex] = L.

2. The attempt at a solution

Ok, so this is what I have so far - I was able to get #1, but got stuck with the proofs for #2.

1. If f(x) is monotonic increasing (decreasing) then limf(x) as x→c[tex]^{-}[/tex] exists.

f: R→R

c ∈R

Case 1: (Proving a lefthand limit exists for a monotonic increasing function)

Let L = sup{f(x) : x<c}. We want to show that ([tex]\forall[/tex][tex]\epsilon[/tex]>0) ([tex]\exists[/tex][tex]\delta[/tex]) ([tex]\forall[/tex]x ∈ R) (0<c-x<δ ⇒ |f(x) - L|<[tex]\epsilon[/tex].

Consider the interval (L - <[tex]\epsilon[/tex], L). [tex]\exists[/tex]x[tex]_{1}[/tex], such that x[tex]_{1}[/tex]<c and L - [tex]\epsilon[/tex]<f(x[tex]_{1}[/tex])≤L [because otherwise L is not the sup, but L - [tex]\epsilon[/tex] would be the sup! So therefore, f(x[tex]_{1}[/tex]) must exist in between those two numbers.]

Let [tex]\delta[/tex] = c - x[tex]_{1}[/tex].

[tex]\forall[/tex]x ∈ R if 0<c-x<δ → 0<c-x<c - x[tex]_{1}[/tex] ⇒ x>x[tex]_{1}[/tex], so since f is monotonic increasing f(x)>f(x[tex]_{1}[/tex]).

Then, because L - [tex]\epsilon[/tex]<f(x[tex]_{1}[/tex])<f(x)≤L,

L - [tex]\epsilon[/tex]<f(x)≤L and |f(x) - L|<[tex]\epsilon[/tex].

This is all I have so far! Any help or advice in how to solve part 2 of this problem would be greatly appreciated - thanks so much!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Limsup h.w. proofs

**Physics Forums | Science Articles, Homework Help, Discussion**