Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Line e Surface Infinitesimal

  1. Dec 13, 2013 #1
    I think you know definition of line infinitesimal:
    [tex][ds]^2 = \begin{bmatrix} dx & dy & dz \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}^2 \begin{bmatrix} dx\\ dy\\ dz\\ \end{bmatrix} = \begin{bmatrix} dr & d\theta & dz \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & r & 0\\ 0 & 0 & 1\\ \end{bmatrix}^2 \begin{bmatrix} dr\\ d\theta\\ dz\\ \end{bmatrix} = \begin{bmatrix} d\rho & d\phi & d\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \rho & 0\\ 0 & 0 & \rho\;sin(\phi)\\ \end{bmatrix}^2 \begin{bmatrix} d\rho\\ d\phi\\ d\theta\\ \end{bmatrix}[/tex]

    From this, is correct if I deduce the formula to surface infinitesimal like this?
    [tex][d^2S]^2 = \begin{bmatrix} dydz & dxdz & dxdy \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}^2 \begin{bmatrix} dydz\\ dxdz\\ dxdy\\ \end{bmatrix} = \begin{bmatrix} d\theta dz & drdz & drd\theta \end{bmatrix} \begin{bmatrix} r & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & r\\ \end{bmatrix}^2 \begin{bmatrix} d\theta dz\\ drdz\\ drd\theta\\ \end{bmatrix} = \begin{bmatrix} d\phi d\theta & d\rho d\theta & d\rho d\phi \end{bmatrix} \begin{bmatrix} \rho^2\;sin(\phi) & 0 & 0\\ 0 & \rho\;sin(\phi) & 0\\ 0 & 0 & \rho\\ \end{bmatrix}^2 \begin{bmatrix} d\phi d\theta\\ d\rho d\theta\\ d\rho d\phi\\ \end{bmatrix}[/tex]

    And more one second question: dxdy is equal d²xy ?
     
  2. jcsd
  3. Dec 16, 2013 #2

    ChrisVer

    User Avatar
    Gold Member

    you can always try the "old way" of doing things...
    Find the infinitesimal tangent vectors on your surface, and take the cross product
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Line e Surface Infinitesimal
  1. Riemann surfaces (Replies: 2)

  2. K3 surface (Replies: 2)

Loading...