- #1

realcomfy

- 12

- 0

It is simple enough to convert the x and y components to their cylindrical counterparts, but I am unsure what to do about the unit vectors. Since the line integral of a vector field contains a dot product between the vector field and the differential element, this requires the two to have the same unit vectors, right?

I found the conversion matrix for cylindrical to cartesian (http://en.wikipedia.org/wiki/Vector_fields_in_cylindrical_and_spherical_coordinates) but I'm not totally sure how to convert the other way around (from cartesian to cylindrical). Wikipedia says that the transform matrix is orthogonal, so does this mean I can simply divide it to the other side and end up with the transpose? Then write my cartesian vectors in terms of the cylindrical?

Thanks for your help.