Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Line of Intersection of two Planes

  1. May 27, 2005 #1
    How do I find the line of intersection of two planes? I have an idea, but both of the planes have a -2z

    ie. Plane 1: 10x-4y-2z=4 Plane 2: 14x+7y-2z

    If I set them both equal to each other, I lose the z part. So, is there some other way to solve this, or am I missing something? Thanks!
     
  2. jcsd
  3. May 27, 2005 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    The equation for the second plane is incomplete

    Daniel.

    P.S.If "z" goes,then that line is in the Oxy plane,right...?
     
  4. May 27, 2005 #3
    woops.

    Just add =#. I am just curious about the general case of how to solve such a problem.


    ie. Plane 1: 10x-4y-2z=4 Plane 2: 14x+7y-2z=6

    Also, if z is removed what would the symmetric form of that line be? Would it just not have a z part?
     
    Last edited: May 27, 2005
  5. May 27, 2005 #4

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    What do you mean symmetric form...?Just set them equal and find the equation giving the line.It should read as linear combo of "x" & "y" yielding 0.

    Daniel.
     
  6. May 27, 2005 #5
    Ok here is the whole problem.

    I am trying to find an equation for a line that passes through a point P(x,y,z) and is parallel to the line of interestion of the planes p1, and p2.

    For example: Find an equation for the line that passes through the point (0,1,-1) and is parallel to the line of intersection of the planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7.


    edit.. Symmetric form of a line in R3.

    If L is a line that contains the point [tex](x_0, y_0, z_0)[/tex] and is parallel to the vector v = Ai + Bj + Ck then the point (x, y, z,) is on L if and only if its cooridnates satisfy

    [tex]\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C} [/tex]


    edit2... fixed the latex
     
    Last edited: May 27, 2005
  7. May 27, 2005 #6

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Here's the parametric equation of the intersection of the 2 planes

    [tex]\left\{\begin{array}{c}z=\frac{15y-1}{2}\\x=7y+2 \end{array}\right [/tex]

    I hope it's easy from now.

    Daniel.
     
  8. May 28, 2005 #7
    Killing a fly with a sledgehammer as my hs math teacher would say. How about this, forget the whole finding the equation of the line. Find a point A that is on the interesecting line, and then a point B on the intersecting line, then using the vector AB? I think that will work. Now back to bed. :cool:


    edit... And to find the actual equation of the intersecting line doing the same thing would probably work, just replace the point with a point that it is on the intersecting line.
     
    Last edited: May 28, 2005
  9. May 28, 2005 #8
    I don't see how the parametric form is a sledgehammer in this case. You still have to find these two points and the easiest way to find them is to write x and z in terms of y then choose two y's. This is exactly what daniel has given you.

    Steven
     
  10. May 28, 2005 #9
    I'm probably missing something but do you really need the equation to the line of intersection to find the line you are seeking? The cross product of the normals to the two planes gives you a vector which is parallel to the line of intersection. The vector equation of the line you want is then r = (vector representing given point) + t(cross product) where t is a scalar.

    The symmetric equation for that line can then be easily found.
     
    Last edited: May 28, 2005
  11. May 28, 2005 #10
    Yes, you are right the points will still be needed. I meant sledgehammer in the way I was trying to solve the problem, considering that there seem to be much easier routes, not about dex helping me out.

    That seems like it will work too, I never thought about that, thanks.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Line of Intersection of two Planes
Loading...