- #1

- 267

- 42

## Homework Statement

[/B]

Consider the line whose shortest distance to the origin is 5 and that is perpendicular to the ray ##\theta= \frac {5*\pi}{7}## for r>0

Find its polar equation ##r=r(\theta)## and ##\theta_1<\theta_2## in the interval ##[0, 2\pi]## such that ##r(\theta)\geq 0## for all ##\theta_1\leq\theta\leq\theta_2## as ##\theta## increases from ##\theta_1## to ##\theta_2##, the point ##(r(\theta), \theta)## traces the entire line once.

**2. The attempt at a solution**

m*x+b=y

##m=\tan(3/14*\pi)##

b=5/cos(2/7*pi)

$$-\frac{\frac 5 {\cos(\frac 2 7*\pi)}}{(\tan( \frac 3 {14}*\pi)*\cos(\theta)-\sin(\theta))}$$

#### Attachments

Last edited by a moderator: