This first one, I just want to verify that I've understood what the question is asking.(adsbygoogle = window.adsbygoogle || []).push({});

It says: If [tex]x_{n+1} = Ax_{n}[/tex], write an expression for [tex]x_{n}[/tex]. The matrix A = [tex]\left(\begin{array}{ccc}2&0&0\\1&3&0\\-3&5&4\end{array}\right)[/tex]

From what I understand, this question wants me to do an eigenvector decomposition so this is what I came up with (after finding the eigenvectors and eigenvalues):

[tex]x_{n} = c_{1}(4 * \left(\begin{array}{c}0\\0\\1\end{array}\right)) + c_{2}(3 * \left(\begin{array}{c}0\\\frac{-1}{5}\\1\end{array}\right)) + c_{3}(2 * \left(\begin{array}{c}\frac{1}{4}\\\frac{-1}{4}\\1\end{array}\right))[/tex]

Is that what the question was asking for??

The other question (or help I need) is this one: Verify that there are infinitely many least squares solutions which are given by x = [tex]\left(\begin{array}{c}\frac{2}{7}\\\frac{13}{84}\\0\end{array}\right) + t \left(\begin{array}{c}\frac{-1}{7}\\\frac{5}{7}\\1\end{array}\right)[/tex]

It's talking about this system...

[tex]\left(\begin{array}{ccc}3&1&1\\2&-4&10\\-1&3&-7\end{array}\right) \left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right) = \left(\begin{array}{c}2\\-2\\1\end{array}\right)[/tex]

I multiplied both sides by the inverse of the matrix and got this system:

[tex]\left(\begin{array}{ccc}14&-8&30\\-8&26&-60\\30&-60&150\end{array}\right) \left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right) = \left(\begin{array}{c}-1\\13\\-25\end{array}\right)[/tex]

and I then row reduced it to..

[tex]\left(\begin{array}{cccc}14&-8&30&1\\0&\frac{150}{7}&\frac{-300}{7}&\frac{95}{7}\\0&0&0&0\end{array}\right)[/tex]

I thought I was going on the right track since I can see that this has infinitely many solutions but when I tried to find x...

[tex]x_{3} = t[/tex]

[tex]x_{2} = \frac{19}{30} + 2t[/tex]

[tex]x_{1} = \frac{13}{30} - t[/tex]

which definitely does not verify the above question. Can someone tell me where I went wrong? Thanks :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Linear algebra help

**Physics Forums | Science Articles, Homework Help, Discussion**