Let V be a vector space and let T: V [tex]\rightarrow[/tex] V be a linear transformation. Suppose that n and k are positive integers.(adsbygoogle = window.adsbygoogle || []).push({});

(a) If w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0, must {w, T(w),...,T[tex]^{k}[/tex](w)} be linearly independent?

(b) Assuming that w [tex]\in[/tex] V such that T[tex]^{k}[/tex](w)[tex]\neq[/tex]0 and T[tex]^{k+1}[/tex](w)=0. Let W be the subspace of V spanned by {w, T(w),...,T[tex]^{k}[/tex](w)}. If v is a member of V such that T[tex]^{n}[/tex](v)[tex]\notin[/tex]W and T[tex]^{n+1}[/tex](v)[tex]\in[/tex]W, must {w, T(w),...,T[tex]^{k}[/tex](w),v,T(v),...,T[tex]^{n}[/tex](v)} be linearly independent? Explain.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Linear algebra problem

**Physics Forums | Science Articles, Homework Help, Discussion**