Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Linear Algebra Textbook Rec

  1. Sep 16, 2010 #1

    I've got an introductory Linear Algebra course that is using Elementary Linear Algebra with Applications by Bernard Kolman, David R. Hill and from what I can ascertain, it's a garbagety textbook [https://www.amazon.com/Elementary-Linear-Algebra-Bernard-Kolman/dp/0130457876/"]. A lot of of the negative reviews center around its lack of theory, bad examples and polarizing problems (either too easy/tedious or too hard given the material taught).

    The course from what I garner is pretty computational but with a bit of theory and proofs. Are there any recommendations to an alternative introductory Linear Algebra textbook?

    Thanks for any help!
    Last edited by a moderator: Apr 25, 2017
  2. jcsd
  3. Sep 16, 2010 #2
    You want Strang's "Introduction to Linear Algebra." For more theory, supplement with Axler's "Linear Algebra Done Right" and if you prefer more rigor, Halmos's "Finite Dimensional Vector Spaces" is a classic.
    Last edited by a moderator: Apr 25, 2017
  4. Sep 17, 2010 #3
    I think a book covering similar material at a similar level is:
    available for free download and purchase on amazon.com. Axler is good if you don't want such a computational look at LA, and is also for beginners.
    Last edited: Sep 17, 2010
  5. Sep 17, 2010 #4
    I like Hoffman & Kunze - Linear Algebra.
  6. Sep 17, 2010 #5


    User Avatar
    Science Advisor
    Gold Member

    I would recommend "elementary linear algebra" by Anton. It is a mix of computation and theory. I also second the Strang "intro to linear algebra" book for a first look at the topic. If you have never seen linear algebra before, I would not recommend Axler or Halmos unless you are prepared to do a ton of work learning things your current book may not emphasize - I would look at those after the course is over. If this is your second course in the topic, then both of those are reasonable references.

    good luck

  7. Sep 17, 2010 #6
  8. Sep 18, 2010 #7


    User Avatar
    Science Advisor
    Gold Member

    forgot to mention that Axler explicitly states in his introduction that his book is for a second course, not for a first course. Halmos is at the same level as Axler.

  9. Sep 18, 2010 #8


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Here's the exact quote:
    I studied an older edition of Anton for the linear algebra course I took during my first year at the university. I think I would have preferred Axler as a first book back then. I know I like it a lot better now. As I recall, Anton did a good job of teaching how to calculate stuff when the vector space is [tex]\mathbb R^n[/tex], but you could read at least 100 pages (maybe 200) without being able to explain what linear algebra is. I remember that it was actually possible to pass the exam we got without knowing anything about linear operators. :rofl: Axler on the other hand, starts chapter 1 with
    When I saw that, I instantly knew that I would like the book. (I understand that some people might prefer a different approach).
    Last edited: Sep 18, 2010
  10. Sep 19, 2010 #9
    For what its worth artin's algebra book has a lot of linear algebra in it. The frst 140 pages or so are dedicated to it as well as more topics throughout the book.
  11. Sep 19, 2010 #10
    Has anyone ever used Linear Algebra: An Introductory Approach by Charles W. Curtis? How is it? We've been recommended this book for our Honours Linear Algebra class, but the professor said it isn't really necessary, so I was wondering whether it's actually worth going over it or even leaning on it heavily when studying.
  12. Oct 8, 2010 #11
    I would seriously recommend you use Strang's Introduction to Linear Algebra concurrently
    with the video lectures on M.I.T.'s website/youtube. As with any subject just one book is
    never enough, ever, so I also suggest Serge Lang's Introduction to Linear Algebra.
    I'm currently plowing these two together & I must say you have a perfect match, both
    books go more or less over the same areas from two slightly different perspectives, Strang
    giving it the ol' standard way while Lang lets you look at the same material slightly more
    theoretically. In this case theoretically means that Lang gives you the tools to rederive
    everything from the mere basics. I recommend both because with Strang you get a first
    glimpse at the concept laying the cement and Lang is there to finish it off setting in stone the
    concepts you'd just properly learned about from Strang :approve:
  13. Oct 16, 2010 #12
    Forget Strang, it's so bloody boring. Stick with Lang, Serge's introductory book would
    give you enough rigour to be able to approach Axler with confidence (assuming that's
    the reason you're not already reading it like me :tongue:). Looking in Axler now I
    understand way more from the casual glances. However I found Serge's Linear Algebra
    book, the 2nd edition (not the third that's on amazon) and I must say I feel cheated.
    This book contains the 3rd introduction to linear algebra, the 3rd Linear Algebra &
    some stuff on groups and rings at the end (and answers at the back!).
  14. Oct 28, 2010 #13


    User Avatar
    Science Advisor
    Homework Helper

    there are 4 free books on linear algebra on my webpage http://www.math.uga.edu/~roy/

    #1 is only about 15 pages long and starts from scratch. Obviously there is a lot to fill in as "exercises".
    #7 is about 67 pages long and also starts from scratch and is sort of a second course for advanced undergrads.

    These first two treatments assume mostly polynomial algebra.

    #3 is a complete introductory course on algebra including linear algebra and assumes very little but uses the abstract concept of a module over a ring.

    #6 is a more condensed version of #3, also aimed at grad students.

    These last two also treat groups and galois theory.

    another free book is "linear algebra done wrong: by sergei treil, on his webpage.

    I recommend this book. Also there is a superb book by shilov available in paperback.

    the last page of my math 8000 notes, #6 above, has a list of references including some of those above.
    Last edited: Oct 28, 2010
  15. Nov 20, 2010 #14
    Hoffman and Kunze has treated me very well so far.
  16. Nov 28, 2010 #15


    User Avatar
    Science Advisor
    Homework Helper

    hoffman kunze is outstanding. 40 years ago, when math meant proofs, it was the American standard.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook