(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let f(x,y) = [itex](xe^y)^8[/itex]

i) Find

[itex]\frac{∂f}{∂x}[/itex] [itex]\frac{∂f}{∂y}[/itex] [itex]\frac{∂^2f}{∂x^2}[/itex]

ii) Using a tangent plane of f(x,y) find an approximate value of (0.98e^0.01)^8

2. Relevant equations

3. The attempt at a solution

i)

[itex]\frac{∂f}{∂x}[/itex] =[itex] 8e^{8y}x^{7}[/itex]

[itex]\frac{∂f}{∂y}[/itex] = [itex] 8x^{8}e^{8y}[/itex]

[itex]\frac{∂^2f}{∂x^2}[/itex] = [itex] 56e^{8y}x^{6}[/itex]

ii) I have done many questions on finding linear approximations but I have always had a function, a point to evaluate the function at and points to approximate it at.

In this I have the function Let f(x,y) = [itex](xe^y)^8[/itex] and want to use it to approximate f(0.98,0.01) but I'm not sure at what point I should evaluate it at.

Can anyone help out?

**Physics Forums - The Fusion of Science and Community**

# Linear Approximation

Have something to add?

- Similar discussions for: Linear Approximation

Loading...

**Physics Forums - The Fusion of Science and Community**