- #1

- 57

- 0

To which I got:

b = [tex]\left(\begin{array}{cc}1\\3\\2\end{array}\right)[/tex] = [tex]\left(\begin{array}{cc}1\\-2\\2\end{array}\right)\frac{7}{2} + \left(\begin{array}{cc}0\\1\\-3\end{array}\right)0 + \left(\begin{array}{cc}-1\\4\\-2\end{array}\right)\frac{5}{2}[/tex]

(as A was the matrix made up of those three vectors, and the scalars were the answers from the system Ax=b)

Then the question asks: Determine whether the vector v1 is the linear combination of vectors, v2, v3, b.

Could someone tell me how to find the scalar for vector b?

At the moment I have:

[tex]\left(\begin{array}{cc}0\\1\\-3\end{array}\right)0+ \left(\begin{array}{cc}-1\\4\\-2\end{array}\right)\frac{5}{2}+ \left(\begin{array}{cc}\frac{7}{2}\\0\\\frac{5}{2}\end{array}\right)[/tex]

And I don't know what number to multiply the last vector by...