Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Linearization of product of rotation matrices

  1. May 8, 2012 #1
    Hello,

    I have the following function:

    [itex]\textbf{h}[/itex]([itex]\textbf{x}[/itex]) = [ [itex]\textbf{C}[/itex][itex]^{n}_{b2}[/itex] ][itex]^{T}[/itex] [itex]\textbf{C}[/itex][itex]^{n}_{b1}[/itex] [itex]\textbf{C}[/itex][itex]^{b1}_{b2}[/itex]

    with

    [itex]\textbf{x}[/itex] = [ [itex]\textbf{ε}[/itex][itex]_{1}[/itex][itex]\;[/itex] [itex]\textbf{ε}[/itex][itex]_{2}[/itex] ][itex]^{T}[/itex] containing Euler angles [itex]\mathbf{ε}[/itex] such that direction cosine matrix [itex]\textbf{C}[/itex][itex]^{n}_{b1}[/itex] is a function of [itex]\textbf{ε}[/itex][itex]_{1}[/itex] and [itex]\textbf{C}[/itex][itex]^{n}_{b2}[/itex] is a function of [itex]\textbf{ε}[/itex][itex]_{2}[/itex] (through the relationship linking Euler angles and their corresponding cosine matrix), and [itex] b1, b2, n [/itex] are different reference frames.

    I want to linearize [itex]\textbf{h}[/itex]([itex]\textbf{x}[/itex]) with respect to [itex]\textbf{ε}[/itex][itex]_{1}[/itex] and [itex]\textbf{ε}[/itex][itex]_{2}[/itex], which should give me the following (3 x 6) matrix:

    [itex] \mathbf{H} = \left[ \frac{\partial \textbf{h}(\textbf{x})}{\partial \textbf{ε}_{1}} \frac{\partial \textbf{h}(\textbf{x})}{\partial \textbf{ε}_{2}} \right][/itex]


    Could anyone give me hints on how I could solve this problem, i.e. compute the elements of [itex]\mathbf{H}[/itex]? Thank you in advance for your suggestions :smile:
     
    Last edited: May 8, 2012
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted