1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Lipschitz continuous

  1. Dec 2, 2012 #1
    whatisthis.png
    This question is about lipschitz continuous, i think the way to check if the solutions can be found as fixed points is just differentiating f(t), but i'm not sure about this. Can anyone give me some hints please? I will really appreciate if you can give me some small hints.
     
  2. jcsd
  3. Dec 2, 2012 #2

    micromass

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    You have a map [itex]\Theta:\mathcal{C}([0,T],\mathbb{R})\rightarrow \mathcal{C}([0,T],\mathbb{R})[/itex] such that

    [tex]\Theta(f):[0,T]\rightarrow \mathbb{R}:t\rightarrow 1+\int_0^t 2\cos(sf^2(s))ds[/tex]

    Strictly speaking, you first need to check that [itex]\Theta(f)[/itex] is in fact continuous before you can say that the codomain of [itex]\Theta[/itex] is [itex]\mathcal{C}([0,T],\mathbb{R})[/itex].

    Now, you need to find out when [itex]\Theta[/itex] is a contraction. Can you tell us what that means??
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Lipschitz continuous
  1. Lipschitz Continuity (Replies: 2)

  2. Lipschitz continuity (Replies: 1)

Loading...