Liquid metal

enigma

Aerospace Engineer
Staff Emeritus
Science Advisor
Gold Member
1,732
8
Well, lets get these new playgrounds up and running!

http://www.liquidmetalgolf.com/

I saw a special about this stuff on the history channel a few weeks ago. It looks really cool. Anybody have any cool ideas how it can be used?
 

russ_watters

Mentor
17,951
4,449
Originally posted by enigma
Anybody have any cool ideas how it can be used?
Golf is of course the most important thing you can do with new materials technology.

Hiya. :smile:
 

enigma

Aerospace Engineer
Staff Emeritus
Science Advisor
Gold Member
1,732
8
Ah! The golf is in the site name because of their amazing demo. If you go into the site, and look to the left, it shows a clip of it.

A golfball bouncing on liquidmetal has a coefficient of restitution MUCH larger than steel or titanium. It keeps bouncing and bouncing. It actually looks like one of the high-bouncy balls you get out of the dime toy dispensers in the supermarket.
 

Bystander

Science Advisor
Homework Helper
Gold Member
4,994
1,008
It might already be hiding in the DoD apps --- if it's as good as is claimed, it's ideal for bearings, gears, shafts, and other components in high throughput mechanical power transmission applications --- couple more knots for the Navy's bathtub toys, little more performance here and there for the other services.


First addendum: Low thermal expansion coefficient for gauging and measurement applications, kinematic mounts, optical benches, precision valves; chemical process equipment.
 
Last edited:

russ_watters

Mentor
17,951
4,449
Originally posted by enigma
Ah! The golf is in the site name because of their amazing demo. If you go into the site, and look to the left, it shows a clip of it.
Actually, golf is in the site name because they sell pretty good drivers. Hype aside, I think the materials science is a nice innovation.
 
Didn't read it all, but it sounds neat!
 
C

Cyg-1

Guest
wow :)
thats really cool!

just got too interested about it and found even http://ice.chem.wisc.edu/catalogitems/ScienceKits.htm#Amorphous [Broken] where u can order those tubes etc :)

The atoms in an amorphous material are not arranged in any ordered structure, rather they have a tightly-packed, but random arrangement. Amorphous materials are formed by cooling the liquid material quickly enough to prevent crystallization; the atoms do not have time to arrange themselves into an ordered structure. Liquidmetal® is an amorphous alloy (also known as a metallic glass) containing five elements, with the elemental composition is 41.2% zirconium, 22.5% beryllium, 13.8% titanium, 12.5% copper, and 10.0% nickel.
and those weren't golfballs bouncing.. just plain ball bearings.
 
Last edited by a moderator:
106
0
Quenching a material rapidly to prevent a ordered microscopic arrangement is not a new concept. In fact, blacksmiths in forges of the Middle Ages were working along a similar principle by repeatedly heating a blade, hammering it and quenching it.

The theory is that the work hardening introduces deformations/dislocations into the microscopic structure. At elevated temperatures, large, crystalline grains will re-nucleate about these dislocations. So you get a finer grain structure. Quenching it effectively locks the changes in place.

Regardless, one major disadvantage of metals with an amorphous microstructure formed by quenching is that they are an unstable alloy. Basically, if you leave them for some time, their microstructure will slowly change, reverting back to a crystalline structure. This effect is even worse at elevated temperatures, because the reorganising of the microstructure is mostly a diffusion governed process, thus controlled by Arrhenius' Law.

This process basically limits the applications of such materials to lower temperature operations (e.g. not in engines). If they are implemented in high temperature applications, they must be continuously monitored/replaced.

Their improved strength/weight ratio comes partly from their lower densities due to poorer atomic packing. The high hardness/yield strength from the lack of any slip lines, like grain boundaries. Their allegedly higher corrosion resistance and wear resistance claims are a bit dubious. Thermodynamically speaking, the atoms in an amorphous metal are at a higher energy state than a crystalline one, meaning that they should be more reactive. Sort of like how a lump of marble will react slower than powdered marble with acid. The 'higher' wear resistance could be due to them comparing a tool made monolithically out of LiquidMetal rather than with a (as is typically done) surface treated tool. A surface treated tool is like a tooth - hard enamel with a relatively softer dentine. Once you breach the hard surface the tool loses its wear resistance. Obviously, a monolithic part made out of a single material with only average wear resistance may well have a higher overall wear resistance than one with just a hard coating.
 
106
0
Incidentally, I would like to see comparisons between the yield strengths of such LiquidMetals and monocrystalline materials, such as those used in turbine blades of high performance aero engines.
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top