I have been working on this problem for a while.(adsbygoogle = window.adsbygoogle || []).push({});

I am supposed to prove that [tex]

log 2 = \lim_{n \rightarrow \infty} \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2^n}[/tex].

The problem is that I have a hard time figuring out how I am supposed to prove that something is equal to a transcendental function without assuming its existence.

First, I am supposed to let

[tex]

\lim_{n \rightarrow \infty} \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2^n} = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}}[/tex]

So far so good... but then I should use Riemann sums to prove that this is equal to log 2. How can I do that?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Log and Riemann sums

**Physics Forums | Science Articles, Homework Help, Discussion**