Logic in proofs

  • Thread starter ice109
  • Start date
  • #1
ice109
1,714
5
im just starting to write proofs and it's going well but some things aren't immediately obvious to me.

for example it is not immediately obvious to me why

[tex]\forall_i ~ p_i \vee q_i \Leftrightarrow (\forall_i p_i ) \vee (\forall_i q_i)[/tex] isn't a tautology

and it wasn't immediately obvious to me why a statement like this

[tex]\forall_i ~ x \in A \vee B_i [/tex]

isn't equivalent to

[tex]x \in A \vee \forall_i ~ x \in B_i [/tex]

although i do understand now. can someone suggest a book or an internet resource that would help me with this? i picked up an introduction to math logic book but there's so much other stuff in there and obviously with more practice i'll get the hang of it but still some ideas on how to either get it quicker or as mentioned some resources. maybe prove a bunch of these set theorems lots of different ways.
 

Answers and Replies

  • #2
wildman
30
4
The book "How to Prove It: A Structured Approach" by Daniel J Velleman was useful to me. The first two chapters are an easy to understand discussion of logic as it pertains to proofs.
 
  • #3
ice109
1,714
5
anyone else?
 
  • #4
HallsofIvy
Science Advisor
Homework Helper
43,021
970
Consider the statements pi= "i is an odd number" and qi= "i+ 1 is an odd number". Then for all i, pi v qi= "either i is an odd number or i+ 1 is an odd number" is true.

[itex]\forall i p_i[/itex], however, is the statement "for all i, i is an odd number" which is false. [itex]\forall i q_i[/itex] is the statement "for all i, i+ 1 is an odd number" which is also false. "false" v "false"= "false".
 
  • #5
ice109
1,714
5
yea i figured that one out
 

Suggested for: Logic in proofs

  • Last Post
Replies
4
Views
419
Replies
1
Views
238
Replies
1
Views
204
Changing the Statement Combinatorial proofs & Contraposition
Replies
5
Views
396
Replies
2
Views
414
Replies
4
Views
477
  • Last Post
Replies
3
Views
1K
Replies
5
Views
599
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
10
Views
1K
Top