Longitudinal Doppler Effect

  • Thread starter greendog77
  • Start date
  • #1
greendog77
25
0
A and B leave from a common point and travel in opposite directions with
relative speed v. When B’s clock shows that a time T has elapsed, he (B)
sends out a light signal. When A receives the signal, what time does his (A’s)
clock show? Answer this question by doing the calculation entirely in (a) A’s
frame, and then (b) B’s frame.

(Y = gamma)

a)

In A's frame, when A's clock reads YT, B's clock reads T. This means B is at a distance YTv from A. When B emits the photon, the photon takes time YTv/c to reach A in A's frame. Thus, the total time for A is YT(1 + v/c).

b)

In B's frame, when his clock reads T, A is at a distance Tv away. Then, B emits a photon which travels at a speed of (c-v) relative to A in B's reference frame. Thus, the time taken for the photon to reach A is Tv/(c-v). Thus the total time this takes according to B is T + Tv/(c-v) = T(1 + v/(c-v)). By time dilation, in A the total time is YT(1 + v/(c-v)).

I get these two different answers. Does anyone know what I'm doing wrong?
 

Answers and Replies

  • #2
stevendaryl
Staff Emeritus
Science Advisor
Insights Author
8,942
2,931
A and B leave from a common point and travel in opposite directions with
relative speed v. When B’s clock shows that a time T has elapsed, he (B)
sends out a light signal. When A receives the signal, what time does his (A’s)
clock show? Answer this question by doing the calculation entirely in (a) A’s
frame, and then (b) B’s frame.

(Y = gamma)

a)

In A's frame, when A's clock reads YT, B's clock reads T. This means B is at a distance YTv from A. When B emits the photon, the photon takes time YTv/c to reach A in A's frame. Thus, the total time for A is YT(1 + v/c).

b)

In B's frame, when his clock reads T, A is at a distance Tv away. Then, B emits a photon which travels at a speed of (c-v) relative to A in B's reference frame. Thus, the time taken for the photon to reach A is Tv/(c-v). Thus the total time this takes according to B is T + Tv/(c-v) = T(1 + v/(c-v)). By time dilation, in A the total time is YT(1 + v/(c-v)).

I get these two different answers. Does anyone know what I'm doing wrong?

Your calculation in B's frame is wrong. You got it correct, that the time, according to B's frame, for the photon to reach A is T_arrive = T(1+v/(c-v)) = T/(1 - v/c). But in B's frame, A's clock is running slower, so the elapsed time on A's clock is T'_arrive = T_arrive/Y = T/(Y (1-v/c)).

That's the same as your calculation in A's frame, since

T/(Y (1-v/c)) = YT (1+v/c)
 
  • Like
Likes 1 person

Suggested for: Longitudinal Doppler Effect

  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
25
Views
3K
  • Last Post
Replies
12
Views
635
  • Last Post
Replies
7
Views
978
  • Last Post
Replies
3
Views
7K
  • Last Post
Replies
8
Views
3K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
13
Views
4K
Top