- #1

- 1,293

- 98

I'm looking for the equations of hypertori (e.g. n-dimensional tori). By equations I'm mean explicit, implicit, or parametric equations that represent hypertori (please, no topological glue-ing in the construction!), and by hypertori I mean the family of surfaces obtained by generalizing the usual, doughnut-looking torus (e.g., a 3-d torus, a 2-torus embedded in 3-space) to [tex]\mathbb{R}^{n}[/tex] . Example:

Hyperellipsoid: set of all points [tex]\left( x_{1},x_{2},...,x_{n} \right) \in\mathbb{R}^{n}[/tex] such that [tex]\sum_{k=1}^{n} \left( \frac{x_{k}}{a_{k}}\right)^{2}=1, a_{K}\in\mathbb{R}[/tex].

Hyperellipsoid: set of all points [tex]\left( x_{1},x_{2},...,x_{n} \right) \in\mathbb{R}^{n}[/tex] such that [tex]\sum_{k=1}^{n} \left( \frac{x_{k}}{a_{k}}\right)^{2}=1, a_{K}\in\mathbb{R}[/tex].

Last edited: