I have been looking at these 3 problems for 2 days now and have gotten practically nowhere. Help please!(adsbygoogle = window.adsbygoogle || []).push({});

1. Find the volume V of the solid bounded by the graph of x^{2}+ y^{2}= 9 and y^{2}+ z^{2}= 9.

I know that both equations are cylinders on different planes and that I need the intersection. I can not figure out what my bounds are or how to set up the problem. I'm stuck.

2. Find the volume and the centroid (center of mass) of the region that is bounded above by the sphere ρ = a and below by the cone φ = c with 0 < c < π/2. Here you assume constant density.

3. Use the change of variables x = u^{2 }- v^{2}, y = 2uv to evaluate the ∫∫R ydA , where R is the region bounded by the x - axis and the parabolas y^{2}= 4 − 4x and y^{2}= 4 + 4x.

I have no idea how to even begin the last two. I've looked through the book and through my notes and can not come up with anything.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Lots of help needed

**Physics Forums | Science Articles, Homework Help, Discussion**