• Support PF! Buy your school textbooks, materials and every day products Here!

Magnetic Field in BIOT-SAVART law

Dear sir/lady

I have a question about the magnrtic force of steady curent .
In Biot - Savart law to evalute of B (magnetic Field ) , below the Integral we have to do a cross product Idl'*(r-r')/|r-r'|^3 that r and r' are the vector position of the field and source . How we can evaluate this Integral if the vector r-r' is zero . ?
for example if we have a U shape Incomplete circuit and put a metal bar as the fourth side to complete it , when a stationary current I circualtes in square , a force will exert on the bar . if we would like to evaluate the force exerted by three sides on the fourth one , we will encounter this problem for the toppest and the lowest point of fourth one , on corners .Because vector r-r' =0 and B approches to infinity . Please help me .
 
Last edited:
1,860
0
If you have a square shape current loop you can use superposition (i.e. the additive linearity operator).
 
223
2
If you have a totally localized current distribution, you'll get divergences, same as if you have point charges in electrostatics, i.e. in Coulomb's Law. Try solving the magnetic field for a cylindrical charge distribution and see what you get.
 
please explain me more !!
 
223
2
Well, just work it out. The Biot-Savart law is pretty much equivalent to Ampere's law, so I'll work out the most trivial example of Ampere's law.

If you have an infinitely long wire with a current I running through it, and it has no spacial extent, then if I make a circle centered on the wire, I find that
[tex] \oint \mathbf{B} \cdot d \mathbf{l} = \mu_0 I[/tex]
which leads to
[tex] B (2 \pi r) = \mu_0 I[/tex]
from which we see that the magnetic field is infinite at r = 0.

Now let's work the same problem, only this time with a wire of radius a and constant current density J. Outside the wire, we get the same result from Ampere's law:
[tex]B = \frac{m_0}{2 \pi} \frac{\pi a^2 J}{r}[/tex]
But inside, the magnetic field is different. Inside, the current enclosed in the loop is given by [tex]I = \pi r^2 J[/tex], which means that
[tex]B = \frac{\mu_0}{2 \pi} \pi r J[/tex]
The magnetic field is nice and well-behaved inside the wire! But what's the difference?

Well, in the first case, the current density can be described as a delta-function, so that [tex]\nabla \times \mathbf{B} = \mu_0 I \delta(x)\delta(y)[/tex] if, say, the wire is resting on the z-axis. These delta-functions are wildly singular, and in fact this differential equation looks very similar to that of a point electrostatic charge [tex]\nabla \cdot \mathbf{E} = q \delta(\mathbf{r}) / \epsilon_0[/tex]

In the second case, the current distribution can be described by step-functions, which although their derivatives are discontinuous, the actual functions are finite and well-behaved everywhere. This is the origin of the difference, and why the magnetic field would diverge for a wire of zero physical extent.
 
Last edited:

Related Threads for: Magnetic Field in BIOT-SAVART law

Replies
1
Views
1K
Replies
1
Views
5K
Replies
11
Views
2K
  • Last Post
Replies
9
Views
3K
Replies
0
Views
2K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
4
Views
1K
Replies
1
Views
1K
Top