- #1

- 122

- 8

## Main Question or Discussion Point

Hello,

I am stuck with this problem:

An electron beam is injected perpendicular to a magnetic field. The electrons feel Lorentz force and start to revolve. This movement reduces the magnetic field, therefore the gyroradius gets higher, which in turn increases the magnetic field again. So the electrons again get closer, and they keep oscillating. This seems wrong. I have probably made a wrong assumption.

This also applies to a magnet entering a coil. As the magnetic field strength increases inside the coil, a current is driven "resisting" the increment. So does the field strength remain zero (the magnet is still moving), drop to a constant value, or oscillate like I mentioned above?

Thank you.

I am stuck with this problem:

An electron beam is injected perpendicular to a magnetic field. The electrons feel Lorentz force and start to revolve. This movement reduces the magnetic field, therefore the gyroradius gets higher, which in turn increases the magnetic field again. So the electrons again get closer, and they keep oscillating. This seems wrong. I have probably made a wrong assumption.

This also applies to a magnet entering a coil. As the magnetic field strength increases inside the coil, a current is driven "resisting" the increment. So does the field strength remain zero (the magnet is still moving), drop to a constant value, or oscillate like I mentioned above?

Thank you.