 #1
 634
 1
π²³ ∞ ° → ~ µ ρ σ τ ω ∑ … √ ∫ ≤ ≥ ± ∃ · θ φ ψ Ω α β γ δ ∂ ∆ ∇ ε λ Λ Γ ô
An arbitrarily long hallow cylindrical electric conductor shown carries a static electric current density J=[tex]\hat{z}[/tex]J_{0}. Determine the magnetic flux density B in the hallow region of radius a. Your result should show that B is constant in this region.
∫B.dl = µ_{0}I
current I = [tex]\hat{z}[/tex]J_{0}pi(b^{2}a^{2})
B. 2pia = µ_{0} [tex]\hat{z}[/tex]J_{0}pi(b^{2}a^{2})
B = µ_{0} [tex]\hat{z}[/tex]J_{0}(b^{2}a^{2}) /2a
I am not sure about B.dl being B.2pi a
Homework Statement
An arbitrarily long hallow cylindrical electric conductor shown carries a static electric current density J=[tex]\hat{z}[/tex]J_{0}. Determine the magnetic flux density B in the hallow region of radius a. Your result should show that B is constant in this region.
Homework Equations
∫B.dl = µ_{0}I
The Attempt at a Solution
current I = [tex]\hat{z}[/tex]J_{0}pi(b^{2}a^{2})
B. 2pia = µ_{0} [tex]\hat{z}[/tex]J_{0}pi(b^{2}a^{2})
B = µ_{0} [tex]\hat{z}[/tex]J_{0}(b^{2}a^{2}) /2a
I am not sure about B.dl being B.2pi a
Attachments

10.8 KB Views: 291
Last edited: