- #1

likephysics

- 636

- 2

π²³ ∞ ° → ~ µ ρ σ τ ω ∑ … √ ∫ ≤ ≥ ± ∃ · θ φ ψ Ω α β γ δ ∂ ∆ ∇ ε λ Λ Γ ô

An arbitrarily long hallow cylindrical electric conductor shown carries a static electric current density J=[tex]\hat{z}[/tex]J

∫B.dl = µ

current I = [tex]\hat{z}[/tex]J

B. 2pia = µ

B = µ

I am not sure about B.dl being B.2pi a

## Homework Statement

An arbitrarily long hallow cylindrical electric conductor shown carries a static electric current density J=[tex]\hat{z}[/tex]J

_{0}. Determine the magnetic flux density B in the hallow region of radius a. Your result should show that B is constant in this region.## Homework Equations

∫B.dl = µ

_{0}I## The Attempt at a Solution

current I = [tex]\hat{z}[/tex]J

_{0}pi(b^{2}-a^{2})B. 2pia = µ

_{0}[tex]\hat{z}[/tex]J_{0}pi(b^{2}-a^{2})B = µ

_{0}[tex]\hat{z}[/tex]J_{0}(b^{2}-a^{2}) /2aI am not sure about B.dl being B.2pi a

#### Attachments

Last edited: