- #1
- 1,444
- 0
hi again, I'm trying to show that [itex]\mathbf{B} = \nabla \times \mathbf{A} [/itex] where [itex]\mathbf{A}[/itex] is the magnetic potential given by:
[itex]\mathbf{A(r)}=\frac{\mu_0}{4 \pi} \int dV' \frac{\mathbf{J(r')}}{|\mathbf{r-r'}|}[/itex]
i deduced that since [itex]\nabla=(\frac{\partial}{\partial{r_1}},\frac{\partial}{\partial{r_2}},\frac{\partial}{\partial{r_3}})[/itex] it only acts on r terms and so
[itex]\nabla \times \mathbf{A}=\frac{\mu_0}{4 \pi} \int dV' \mathbf{J(r')} ( \nabla \times \frac{1}{|\mathbf{r-r'}|} )[/itex]
i can't figure out how to compute that curl - it should be fairly elementary, no?
[itex]\mathbf{A(r)}=\frac{\mu_0}{4 \pi} \int dV' \frac{\mathbf{J(r')}}{|\mathbf{r-r'}|}[/itex]
i deduced that since [itex]\nabla=(\frac{\partial}{\partial{r_1}},\frac{\partial}{\partial{r_2}},\frac{\partial}{\partial{r_3}})[/itex] it only acts on r terms and so
[itex]\nabla \times \mathbf{A}=\frac{\mu_0}{4 \pi} \int dV' \mathbf{J(r')} ( \nabla \times \frac{1}{|\mathbf{r-r'}|} )[/itex]
i can't figure out how to compute that curl - it should be fairly elementary, no?