- 1,444

- 0

[itex]\mathbf{A(r)}=\frac{\mu_0}{4 \pi} \int dV' \frac{\mathbf{J(r')}}{|\mathbf{r-r'}|}[/itex]

i deduced that since [itex]\nabla=(\frac{\partial}{\partial{r_1}},\frac{\partial}{\partial{r_2}},\frac{\partial}{\partial{r_3}})[/itex] it only acts on r terms and so

[itex]\nabla \times \mathbf{A}=\frac{\mu_0}{4 \pi} \int dV' \mathbf{J(r')} ( \nabla \times \frac{1}{|\mathbf{r-r'}|} )[/itex]

i can't figure out how to compute that curl - it should be fairly elementary, no?