Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Magnetization and torque in an ellipsoidal disk

  1. Oct 27, 2011 #1
    If I have an ellipsoidal disk, where the demagnetization constants [tex] Nd_{xx}>>Nd_{yy}>>Nd_{zz}[/tex]. The disk lies on the y-z plane and easy axes are +z or -z.

    The energy of the system (just considering demag fields) will be

    [tex]U=Nd_{xx}sin^2\theta cos^2\phi + Nd_{yy}sin^2\theta sin^2\phi+Nd_{zz}cos^2\theta [/tex]

    The expression can be simplified to

    [tex]U=sin^2\theta (Acos^2\phi + B)+C[/tex]
    [itex]A=Nd_{xx}-Nd_{yy}, B=Nd_{yy}-Nd_{zz}, C=Nd_{zz}[/itex]

    The energy landscape can be seen in the attached figure. If magnetization is at [itex]\theta=\pi/2~and~\phi<\pi/2[/itex], magnetization can go either to [itex]\theta=0 ~or ~\pi[/itex].

    The effective field at [itex]\theta=\pi/2[/itex],
    [tex] H_{eff}=-\nabla U= -\frac{\partial U}{\partial \theta}\hat{\theta}-\frac{1}{sin\theta}\frac{\partial U}{\partial \phi}\hat{\phi}[/itex]
    [tex]=-2sin\theta cos\theta (Acos^2\phi +B)(cos\theta cos\phi \hat{x} + cos\theta sin\phi\hat{y}-sin\theta\hat{z})+2Asin\theta sin\phi cos\phi (-sin\phi\hat{x}+cos\phi\hat{y})[/tex]
    [tex]=2Asin\phi cos\phi (-sin\phi\hat{x}+cos\phi\hat{y})[/tex]

    Torque=mx[itex]H_{eff}[/itex], where [itex]m=[sin\theta cos\phi, sin\theta sin\phi, cos\theta]=[cos\phi, sin\phi, 0][/itex].

    Torque=[itex]2A sin\phi cos\phi [0,0,1][/itex]. For [itex]\phi<\pi/2, ~\theta ~will ~go ~to~ \pi ~and ~for~ \phi >\pi/2, ~\theta ~will~ go ~to ~0[/itex].

    This is opposite what the energy landscape says that for any [itex]\phi[/itex] at [itex]\theta=\pi/2[/itex],[itex] \theta[/itex] can go to 0 or [itex]\pi[/itex].

    Can someone tell me what I am missing??


    Attached Files:

  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?