• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Magnitude of the net force that acts on the charge

A magnetic field has a magnitude of 1.2 10-3 T, and an electric field has a magnitude of 6.0 103 N/C. Both fields point in the same direction. A positive 1.8 µC charge moves at a speed of 2.6 106 m/s in a direction that is perpendicular to both fields. Determine the magnitude of the net force that acts on the charge.

Okay, i know that Fnet=the square root of Fe^2+Fb^2, and after drawing a diagram, i think that they are 2 perpendicular forces, but I don't know what to plug in to the equation, or where to begin. :confused:
 
164
1
you want to start with the Lorentz force law. It states that the vector forces an electric charge will feel from a magnetic and electric field are

F = q(E + v x B) where E, v, and B are vectors and the x denotes the cross product. Pick any direction for the velocity (say the z direction) and then calculate the vector force. I think the other equaiton you have will just give you a magnitude.
 
thank u so much... that definitely helped...i solved the problem by doing:F=qE F=qvB then (qE)squared +(qvB)squared than i took the square root of that total :)
 

Related Threads for: Magnitude of the net force that acts on the charge

Replies
2
Views
7K
Replies
6
Views
7K
Replies
4
Views
2K
Replies
5
Views
3K
Replies
2
Views
4K
Replies
5
Views
3K
Replies
1
Views
473

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top