The Dirac propagator (e.g. for an electron) is given by the inverse of the field equation in momentum space i.e. ([itex]\displaystyle{\not} p - m)\psi[/itex] = 0, which gives:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]\frac{i}{(\displaystyle{\not} p - m)}[/itex] = [itex]\frac{i(\displaystyle{\not} p + m)}{(p^2-m^2)}[/itex].

So is the propagator for a Majorana particle just the inverse of the Majorana equation: [itex]\displaystyle{\not}p \psi + m \psi_{C}=0[/itex]?

But then this just leads to the Dirac equation if the particle is a Majorana spinor, so is the propagator just the same? If so, where does the difference come into effect in e.g. Feynman integrals?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Majorana Propagator

**Physics Forums | Science Articles, Homework Help, Discussion**