(adsbygoogle = window.adsbygoogle || []).push({}); Markov's Inequality !!!!

Let X be uniformly distributed over (1,4)

(a) Use Markov's inequlaity to estimate P(x>=a) a is between 1 to 4 and compare this result to the exact answer.

(b) Find the value of a in (1,4) that minimizes the difference between the bound and the exact probability computed in (a).

For this question i used

EX= (a+b)/2 since its uniformly distributed so i got EX=5/2 which means that the probability of X being greater than or equal to a is less than 5/2a. For the exact value I got the dist function of a uniform RV as being (x-a)/(b-a) so the F(x) should be (a-1)/4. The exact value is 1-(a-1)/4 so i got the exact value as being (4-a)/3.(b) I had (4-a)/3 <= 5/2a and then got them to one side took the derivative and set it equal to 0 and got 2.738

Was this right? Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Markov's Inequality

**Physics Forums | Science Articles, Homework Help, Discussion**