Using a Logarithmic Transformation for a Simpler Random Walk Model

In summary, the conversation discusses various mathematical concepts related to the sequence ##M_n##. These include the computation of ##E(\log(M_n))##, the proof of ##M_{\infty}=0##, and the existence of a finite value ##C## such that ##\mathbb{E}[M^2_n]\leq C## for all ##n##. The conversation also includes a discussion about the correctness of certain answers and the use of the Law of Large Numbers in proving certain results.
  • #1
WMDhamnekar
MHB
376
28
Homework Statement
Let ## X_1, X_2, . . . ## be independent, identically distributed random variables with ##\mathbb{P}\{X_j=2\} =\frac13 , \mathbb{P} \{ X_j = \frac12 \} =\frac23 ##

Let ##M_0=1 ## and for ##n \geq 1, M_n= X_1X_2... X_n ##

1. Show that ##M_n## is a martingale.

2. Explain why ##M_n## satisfies the conditions of the martingale convergence theorem.

3. Let ##M_{\infty}= \lim\limits_{n\to\infty} M_n.## Explain why ##M_{\infty}=0## (Hint: there are at least two ways to show this. One is to consider ##\log M_n ## and use the law of large numbers. Another is to note that with probability one ##M_{n+1}/M_n## does not converge.)

4. Use the optional sampling theorem to determine the probability that ## M_n## ever attains a value as large as 64.

5. Does there exist a ##C < \infty ## such that ##\mathbb{E}[ M^2_n ] \leq C \forall n ##
Relevant Equations
No relevant equations
Answer to 1.
1676621992225.png

Answer to 2.

1676622068635.png


How would you answer rest of the questions 4 and 5 ?
 
Physics news on Phys.org
  • #2
Why does ##ln(M_n)=ln(M_{n-1})##?
 
  • #3
Office_Shredder said:
Why does ##ln(M_n)=ln(M_{n-1})##?
Sorry, if ##\log{M_n} =0, \log{M_{n-1}}=\frac13 \log{2}## or ##\frac23 \log{\frac12}##

Whatever it may be, we can't say ## M_{\infty} =0 ##
 
  • #4
WMDhamnekar said:
Sorry, if ##\log{M_n} =0, \log{M_{n-1}}=\frac13 \log{2}## or ##\frac23 \log{\frac12}##

Whatever it may be, we can't say ## M_{\infty} =0 ##

This feels like you're looking backwards - why are you computing what ##\log(M_{n-1})## ?

What is ##E(\log(M_{n+1})-\log(M_n))##
 
  • #5
Office_Shredder said:
This feels like you're looking backwards - why are you computing what ##\log(M_{n-1})## ?

What is ##E(\log(M_{n+1})-\log(M_n))##
##(\log\{E[M_{n+1}]=1\} -\log\{E[M_n=1]\}) = 0-0 =0##
 
  • #6
The expected value of log of ##M_n## s not 1. Your answer for part three is wrong, the book is right. Try computing that expected value from the definition.
 
  • #7
Office_Shredder said:
The expected value of log of ##M_n## s not 1. Your answer for part three is wrong, the book is right. Try computing that expected value from the definition.
##E[X_n] = 2\times \frac13 + \frac12\times \frac23= 1##
##E[M_n]=X_1X_2...X_n= 1= E[M_0]##
 
  • #8
WMDhamnekar said:
##E[X_n] = 2\times \frac13 + \frac12\times \frac23= 1##
##E[M_n]=X_1X_2...X_n= 1= E[M_0]##

##E(\log(M_n))\neq \log(E(M_n))##!
 
  • Informative
Likes WMDhamnekar
  • #9
Office_Shredder said:
##E(\log(M_n))\neq \log(E(M_n))##!
That means you want to say ##\lim\limits_{n\to\infty}E[\log{M_{\{n+1\}}}=0]=0 ##

##\therefore## by using the Law of large numbers ##M_{\infty}=0##
Author said another way to prove ##M_{\infty}=0## is ## \mathbb{P}[\lim\limits_{n\to\infty}\displaystyle\sum_{n=0}^{n}\frac{M_{n+1}}{M_n}=\infty]## i-e the sequence ##\frac{M_{n+1}}{M_n} ## does not converge.

Answer to 4.
After using the Optional sampling theorem I determined the ##\mathbb{P}[M_n=64]=\frac{1}{3^6}## Is this answer correct?
 
Last edited:
  • #10
WMDhamnekar said:
That means you want to say ##\lim\limits_{n\to\infty}E[\log{M_{\{n+1\}}}=0]=0 ##

##\therefore## by using the Law of large numbers ##M_{\infty}=0##
Author said another way to prove ##M_{\infty}=0## is ## \mathbb{P}[\lim\limits_{n\to\infty}\displaystyle\sum_{n=0}^{n}\frac{M_{n+1}}{M_n}=\infty]## i-e the sequence ##\frac{M_{n+1}}{M_n} ## does not converge.

This notation doesn't make any sense to me to be honest. Maybe we can start with, what is ##E(\log(M_1))##?

Answer to 4.
After using the Optional sampling theorem I determined the ##\mathbb{P}[M_n=64]=\frac{1}{3^6}## Is this answer correct?

That's the odds you hit 2 six times in a row at the start, so it has to be too small. Can you show your work?
 
  • Informative
Likes WMDhamnekar
  • #11
Office_Shredder said:
This notation doesn't make any sense to me to be honest. Maybe we can start with, what is ##E(\log(M_1))##?
That's the odds you hit 2 six times in a row at the start, so it has to be too small. Can you show your work?
Sorry, :sorry: Answer to 3 and 4 are wrong. Answer to 4 is ##\frac{1}{2^6}##

Now, Let me move on to answer 3.
##M_n= X_1X_2...X_n \therefore M_1= X_1.## Now ##X_1## may be 2 or ##\frac12 \therefore \log{M_1}=0, \therefore E[M_1]=1=E[M_0] ## So,my answer is still ##M_{\infty}=1## But the author said ##M_{\infty}=0##

How is that?😕🤔
 
  • #12
WMDhamnekar said:
Sorry, :sorry: Answer to 3 and 4 are wrong. Answer to 4 is ##\frac{1}{2^6}##

Now, Let me move on to answer 3.
##M_n= X_1X_2...X_n \therefore M_1= X_1.## Now ##X_1## may be 2 or ##\frac12 \therefore \log{M_1}=0, \therefore E[M_1]=1=E[M_0] ## So,my answer is still ##M_{\infty}=1## But the author said ##M_{\infty}=0##

How is that?😕🤔

You haven't done anything with the fact that 2 and 1/2 are not equally likely!

##E(\log(M_1))= \frac{1}{3}\log(2)+\frac{2}{3}\log(\frac{1}{2})## . This is *not* equal to 0
 
  • Informative
Likes WMDhamnekar
  • #13
Office_Shredder said:
You haven't done anything with the fact that 2 and 1/2 are not equally likely!

##E(\log(M_1))= \frac{1}{3}\log(2)+\frac{2}{3}\log(\frac{1}{2})## . This is *not* equal to 0
Answer to 3.

## \because \lim\limits_{n\to\infty} M_n= 2^n\times (\frac13)^n +(\frac12)^n \times (\frac23)^n =0 \therefore M_{\infty}=0##

Answer to 5.
Yes. There exists a ##(C < \infty ): \mathbb{E} [M^2_n]\leq C \forall n ##
 
Last edited:
  • #14
I think your answer to 4 is correct, but without seeing any work I can't say if you got it the right way.

It still looks like you're just writing random strings of symbols for number 3 (like literally, are you just putting stuff into chatgpt?) The limit you've written doesn't correspond to the limit of any object that depends on n in the problem. We don't have to cover it if you just wanted to focus on the later parts though.
 
  • Informative
Likes WMDhamnekar
  • #15
Office_Shredder said:
I think your answer to 4 is correct, but without seeing any work I can't say if you got it the right way.

It still looks like you're just writing random strings of symbols for number 3 (like literally, are you just putting stuff into chatgpt?) The limit you've written doesn't correspond to the limit of any object that depends on n in the problem. We don't have to cover it if you just wanted to focus on the later parts though.
Answer to 5.
1678461525096.png

1678461543908.png

Is the above answer correct?
Note: This answer is provided to me by Chat.G.P.T.

I don't understand this answer from second step onwards. If this is the correct answer, would any member explain me this answer?
 

Attachments

  • 1678460621968.png
    1678460621968.png
    16.1 KB · Views: 62
Last edited:
  • #16
I don't agree with chatgpt's answer given by me in #15.
My own computed answer is as follows:
1678698051468.png


Is my answer correct?
 
Last edited:
  • #17
Wouldn’t it be a lot simpler to write ##Y_i=\log_2(X_i)##, making ##\Sigma_0^n Y_i## a random walk?
 

What is a Martingale in discrete time?

A Martingale in discrete time is a mathematical concept used in probability theory and statistics. It is a sequence of random variables that satisfies a specific condition, known as the martingale property. This property states that the expected value of the next random variable in the sequence is equal to the current value, given all previous values.

How is a Martingale different from other stochastic processes?

Martingales are different from other stochastic processes because they have the property of being "fair" or "unbiased". This means that the expected value of a Martingale at any given time is equal to its current value, regardless of previous values. Other stochastic processes may have different expected values at different times.

What are some real-world applications of Martingales in discrete time?

Martingales in discrete time have many applications, including in finance, gambling, and statistics. In finance, Martingales are used to model stock prices and other financial instruments. In gambling, Martingales can be used to design betting strategies. In statistics, Martingales are used in hypothesis testing and to analyze time series data.

What are the limitations of using Martingales in discrete time?

One limitation of using Martingales in discrete time is that they assume an infinite amount of time and resources. In real-world situations, this is not always the case. Additionally, Martingales may not accurately model certain situations, such as those with changing probabilities or non-linear relationships.

How can Martingales be used to manage risk?

Martingales can be used as a risk management tool by identifying and managing potential losses in a sequence of events. For example, in finance, Martingales can be used to design hedging strategies to protect against potential losses in a portfolio. In gambling, Martingales can be used to limit losses by adjusting betting strategies based on previous outcomes.

Similar threads

  • Set Theory, Logic, Probability, Statistics
Replies
6
Views
1K
  • Set Theory, Logic, Probability, Statistics
Replies
8
Views
1K
  • Calculus and Beyond Homework Help
Replies
29
Views
1K
  • Calculus and Beyond Homework Help
Replies
10
Views
982
  • Set Theory, Logic, Probability, Statistics
Replies
6
Views
684
  • Set Theory, Logic, Probability, Statistics
Replies
3
Views
1K
  • Quantum Interpretations and Foundations
Replies
1
Views
519
Replies
2
Views
1K
Replies
0
Views
458
  • Atomic and Condensed Matter
Replies
1
Views
1K
Back
Top