Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Mass at relativistic speeds

  1. May 20, 2014 #1
    1. How do we know that objects mass increase as they approach the speed of light

    2. How did whoever figured this out do so
     
  2. jcsd
  3. May 20, 2014 #2

    xox

    User Avatar

    Mass doesn't "increase", total energy, [itex]E=\frac{m_0c^2}{\sqrt{1-(v/c)^2}}[/itex] is what increases.
    Mass, [itex]m_0[/itex], is invariant.

    Obsolete forms of relativity assume that "relativistic mass", [itex]m=\frac{m_0}{\sqrt{1-(v/c)^2}}[/itex], "increases". Modern interpretations have distanced themselves from the concept of "relativistic mass".
     
    Last edited: May 20, 2014
  4. May 20, 2014 #3

    phinds

    User Avatar
    Gold Member
    2016 Award

    Keep in mind, all motion is relative and you, right now as you are reading this, are traveling at various speeds up to almost the speed of light, depending on what frame of reference is used for the measurement. Do you feel any more massive?
     
  5. May 20, 2014 #4

    adjacent

    User Avatar
    Gold Member

  6. May 20, 2014 #5

    atyy

    User Avatar
    Science Advisor

    You will still find "relativistic mass" as a concept in modern materials like Feynman lectures http://www.feynmanlectures.caltech.edu/I_toc.html or these notes at the US particle accelerator school http://uspas.fnal.gov/materials/09VU/VU_Fund.shtml [Broken].

    http://www.einstein-online.info/elementary/specialRT/emc is a quite readable presentation of experiments in which relativistic mass has to be taken into account.

    An early paper on the increase of mass with energy is Einstein's https://www.fourmilab.ch/etexts/einstein/E_mc2/www/.

    Because energy and relativistic mass are different names for the same quantity, "mass" in a relativistic context is nowadays most often taken to mean the rest mass or invariant mass.
     
    Last edited by a moderator: May 6, 2017
  7. May 20, 2014 #6

    phinds

    User Avatar
    Gold Member
    2016 Award

    "Count" in what sense? Yes, objects in the universe are receding from each other at greater than c. For example, objects at the edge of our observable universe are receding from us at about 3c, but no speeding tickets are issued because recession velocity is not the same as two objects moving relative to each other within a single inertial frame of reference, which is limited to c.

    Google "metric expansion" for more discussion.
     
  8. May 20, 2014 #7

    xox

    User Avatar

    Though I like Feynman Lectures on Physics, the above chapter on"Relativistic Mass" is downright awful. The page from the Max Plank institute is even worse. The above demonstrates that it can happen to the very best. :-)

    Yes, see post 2.
     
    Last edited: May 20, 2014
  9. May 20, 2014 #8

    jtbell

    User Avatar

    Staff: Mentor

    The Feynman lectures are 50 years old. Most or all introductory textbooks of that era probably still used "relativistic mass." The textbook for my sophomore-level intro modern physics course in the early 1970s did. It also claimed that the solution to the twin paradox requires general relativity.

    However, when I was a grad student in experimental particle physics beginning a few years later, none of the people I worked with used "relativistic mass." The only place I saw it was in an accelerator-physics textbook whose first edition was in the early 1950s.
     
  10. May 20, 2014 #9

    adjacent

    User Avatar
    Gold Member

    haha. I guess I need more practise with English.:redface:
     
  11. May 21, 2014 #10

    How does the energy increase?
     
  12. May 21, 2014 #11

    phinds

    User Avatar
    Gold Member
    2016 Award

    You have to put energy into a system to make it move faster. That's where the energy comes from. No energy input, no increase in speed.
     
  13. May 21, 2014 #12
    So basically the acceleration gives it the energy increase?
     
  14. May 21, 2014 #13

    xox

    User Avatar

    [itex]E=\frac{m_0c^2}{\sqrt{1-(v/c)^2}}[/itex]. Calculus shows that when v increases, E increases.
     
  15. May 21, 2014 #14

    phinds

    User Avatar
    Gold Member
    2016 Award

    No, the ENERGY gives it the energy increase, which increases the speed. That is, the energy increase cause the speed to change, not the other way 'round. This is not exactly nitpicking; the way you've stated it, there would have to be a spontaneous increase in speed and that would CAUSE the energy increase, which is not how it works.
     
  16. May 21, 2014 #15

    phinds

    User Avatar
    Gold Member
    2016 Award

    Mathematically, that is the most convenient way of interpreting that equation but as I pointed out, that is not what happens physically. The energy has to increase for the speed to increase, otherwise you have cause and effect backwards.
     
  17. May 21, 2014 #16

    xox

    User Avatar

    The speed is increased via application of a force, a good example is the case of particle accelerators. Application of an (electrostatic) force onto the particle , accelerates it , such that its energy increases. See here, for a good explanation.
     
  18. May 21, 2014 #17
    Energy increases according to [itex]\dot E = \vec F \cdot \vec v[/itex]. Thus when starting from rest the energy can't increase if the speed doesn't increase first.
     
  19. May 21, 2014 #18

    phinds

    User Avatar
    Gold Member
    2016 Award

    So you are saying that the speed increases magically, without the application of any force. I contend that that's backwards. How do you propose to increase the speed of anything without applying any force?
     
  20. May 21, 2014 #19

    Nugatory

    User Avatar

    Staff: Mentor

    There's no "first" here - they increase together smoothly from zero in the idealized case. Calculus was invented in large part because we needed a mathematical tool for dealing with these situations without falling into this "which came first" pitfall.
     
  21. May 21, 2014 #20
    No, I'm saying energy isn't increasing without speed.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Mass at relativistic speeds
  1. Relativistic mass (Replies: 32)

  2. Relativistic mass (Replies: 28)

Loading...