Hi(adsbygoogle = window.adsbygoogle || []).push({});

assume that a Cylinder with radius [tex]\[

R

\][/tex] , proper mass [tex]\[

M_0

\][/tex] and height [tex]\[

h

\][/tex] which is rotating at a constant angular speed [tex]\[

\omega

\][/tex]

In order to calculate the relativistic mass we use the proper mass element to calculate the relativistic mass element , so :

[tex]\[

dM = \frac{{dM_0 }}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }}

\][/tex]

But [tex]\[

dM_0 = \rho _0 dV_0

\][/tex] where [tex]\[

\rho _0

\][/tex] is the proper mass density and [tex]\[

dV_0

\][/tex] is the proper volume element . so :

[tex]\[

\begin{array}{l}

dM = \frac{{\rho _0 dV}}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }} \\

M = \int\limits_V {\frac{{\rho _0 dV}}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }}} = \int\limits_0^R {\int\limits_0^{2\pi } {\int\limits_0^h {\frac{{\rho _0 rdrd\phi dz}}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }}} } } = 2\pi h\rho _0 \int\limits_0^R {\frac{{rdr}}{{\sqrt {1 - \frac{{v^2 }}{{c^2 }}} }}} \\

but:v = \omega r \\

M = 2\pi h\rho _0 \int\limits_0^R {\frac{{rdr}}{{\sqrt {1 - \frac{{\omega ^2 }}{{c^2 }}r^2 } }}} \\

\end{array}

\][/tex]

Now , make the substitution

[tex]\[

u = 1 - \frac{{\omega ^2 }}{{c^2 }}r^2 \Rightarrow du = - 2\frac{{\omega ^2 }}{{c^2 }}rdr \Rightarrow 2rdr = - \frac{{c^2 }}{{\omega ^2 }}du

\][/tex]

so :

[tex]\[

\begin{array}{l}

M = - \frac{{\pi h\rho _0 c^2 }}{{\omega ^2 }}\int\limits_1^{1 - \left( {\frac{{\omega R}}{c}} \right)^2 } {\frac{{du}}{{\sqrt u }}} = - \frac{{2\pi h\rho _0 c^2 }}{{\omega ^2 }}\left[ {\sqrt u } \right]_1^{1 - \left( {\frac{{\omega R}}{c}} \right)^2 } = \frac{{2\pi h\rho _0 c^2 }}{{\omega ^2 }}\left( {1 - \sqrt {1 - \left( {\frac{{\omega R}}{c}} \right)^2 } } \right) \\

but:M_0 = \rho _0 V_0 = \pi R^2 h\rho _0 \\

M = \frac{{2M_0 c^2 }}{{R^2 \omega ^2 }}\left( {1 - \sqrt {1 - \left( {\frac{{\omega R}}{c}} \right)^2 } } \right) \\

\end{array}

\][/tex]

now , there is something make me confused in this equation . If we put [tex]\[

\omega R = c

\][/tex] we find that the relativistic mass is [tex]\[

M = 2M_0

\][/tex] . How it can be ??????

I know that any thing has a v = c it's mass goes to infinity .

Again , How it can be ????????

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mass of a Rotating Cylinder

**Physics Forums | Science Articles, Homework Help, Discussion**