- #1
Vigorous
- 33
- 3
- Homework Statement:
-
A block of mass m sits atop a mass M which rests on a frictionless table. The mass
M is connected to a spring of force constant k attached to the wall. (i) How far can
mass M be pulled so that upon release, the upper mass m does not slip off? The
coefficient of friction between the two masses is µ. (ii) Repeat if µ' is the coefficient of friction between M and the table.
- Relevant Equations:
- F=ma F=-kx
If M is displaced by an amount + x from equilibrium.What happens to the two masses at the point of release for displacements of x and less?
Will they remain static because mass m provides whatever it takes to stop mass M from moving
till some x where m slips and M oscillates
or
Will they decelerate (mass m stays on top of mass M) as the force of static friction decreases with the spring force until equilibrium point is reached but what would be the source of force providing the push to mass m towards the equilibrium point. Moreover, at the point of release the velocity is 0 and the force of static friction ranges from 0 till some maximum to retain the initial velocity so I don't think the second scenario takes place
Will they remain static because mass m provides whatever it takes to stop mass M from moving
till some x where m slips and M oscillates
or
Will they decelerate (mass m stays on top of mass M) as the force of static friction decreases with the spring force until equilibrium point is reached but what would be the source of force providing the push to mass m towards the equilibrium point. Moreover, at the point of release the velocity is 0 and the force of static friction ranges from 0 till some maximum to retain the initial velocity so I don't think the second scenario takes place
Last edited: