#### ChrisVer

Gold Member

- 3,328

- 437

Starting from the Lagrangian density:

[itex] L= -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{m^{2}}{2} B_{\mu}B^{\mu}[/itex]

we can derive the E.o.M. for the field [itex]B[/itex] which read:

[itex] ( \partial^{2} + m^{2}) B^{\mu} - \partial^{\mu} (\partial B) = 0 [/itex]

In the case of a massive field, I am not sure how I can kill out the partial of B through the field equations....

[itex] \partial B=0 [/itex]

Does this come as a constraint/boundary condition of minimizing the action? or is there something I cannot see? In most cases they state it's a Lorentz Gauge, however I am not sure how this can be indeed shown...

[itex] L= -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{m^{2}}{2} B_{\mu}B^{\mu}[/itex]

we can derive the E.o.M. for the field [itex]B[/itex] which read:

[itex] ( \partial^{2} + m^{2}) B^{\mu} - \partial^{\mu} (\partial B) = 0 [/itex]

In the case of a massive field, I am not sure how I can kill out the partial of B through the field equations....

[itex] \partial B=0 [/itex]

Does this come as a constraint/boundary condition of minimizing the action? or is there something I cannot see? In most cases they state it's a Lorentz Gauge, however I am not sure how this can be indeed shown...

Last edited: