Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Math Beauty and Her Limits

  1. Nov 1, 2007 #1

    Can someone please help me prove that

    the lim as n goes to infinity of (the sequence an + the sequence bn) = (the lim of an) + (the lim of bn).

    What I think is that if one adds the two limits an + bn, she will come up with a new sequence cn and take its limit, which equals L. Then if she takes the limit of an and set it equal to L1 and take the limit of bn and set it equal to L2...

    After this I don't know. I don't even know if this makes sense. Someone please help me!

    I hope all of this makes sense. :)
  2. jcsd
  3. Nov 1, 2007 #2


    User Avatar
    Science Advisor
    Homework Helper

    1. Since cn ---> L, there must be a relationship between the elements of cn and the number L. State that relationship.

    2. Now you need to show that the relationship stated in "1" indeed holds. To show this:

    a. assume L = L1 + L2

    b. use the given fact that the relationship stated in "1" holds between an and L1, as well as between bn and L2, to show that when L = L1 + L2, the relationship in "1" holds between cn and L.
  4. Nov 2, 2007 #3
    you could use the epsilon-N definition to show it too. it's a pretty straightforward application of the triangle inequality.
  5. Nov 3, 2007 #4


    User Avatar
    Science Advisor

    You will also want to use [itex]|a+ b|\le |a|+ |b|[/itex].
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook