- #1
- 35
- 0
Cyclovenom said:Let's review what you got
[tex] 2x = \sec\theta [/tex]
[tex] \sqrt{4x^2-1}= tan\theta [/tex]
[tex] dx = \frac{sec\theta tan\theta d\theta}{2} [/tex]
so you will have:
[tex] \int \frac{(\frac{sec\theta}{2})^3}{tan\theta}\frac{sec\theta tan\theta d\theta}{2} [/tex]
and working the terms:
[tex] \frac{1}{16} \int sec^4\theta d\theta [/tex]
[tex] \frac{1}{16} \int sec^2\theta (1+tan^2\theta) d\theta [/tex]
[tex] \frac{1}{16} \int sec^2\theta d\theta + sec^2\theta tan^2\theta d\theta [/tex]
[tex] \frac{1}{16} [\int sec^2\theta d\theta + \int sec^2\theta tan^2\theta d\theta] [/tex]
and you can finish it yourself, i believe...
marlon said:[tex] [\int sec^2\theta tan^2\theta d\theta] [/tex]
is equal to tan³(theta)/3
regards
marlon
Cyclovenom said:On your triangle you should have on:
Hypotenuse: [tex] 2x [/tex]
Opposite: [tex] \sqrt{4x^2-1} [/tex]
Adjacent:[tex] 1 [/tex]
HallsofIvy said:Well, not "u= 2 sec θ" because there was no "u" in the integral!
But setting 2x= secθ will work very nicely (Notice where the 2 is!)
sin2θ+ cos2θ= 1 so, dividing both sides by cos2θ, tan2θ+ 1= sec2θ and then
sec2θ- 1= tan2θ.
That's the whole point of the substitution. If 2x= sec θ then 4x2 =
sec2 θ so 4x2- 1= tan2θ and you can drop the square root: [itex]\sqrt{4x^2-1}= \sqrt{tan^2\theta}= tan \theta [/itex].
(You might have been thinking of examples involving "x2- 4" where the substitution x= 2sec θ would give 4sec2- 4= 4(tan2 θ)