Mathematical Induction Step (1 Viewer)

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Hi,

I'm trying to learn mathematical induction for proving inequalities, but there is just one step I cannot get past: finding another inequality that is added to the inductive hypothesis.

For example, in this problem:

Prove for all positive integers (n >= 1), prove 3^n + 2 >= 3n.

I understand the basis step and in general how to do induction, but for some reason, the example says that that after I get the hypothesis, 3^k + 2 >= 3k (for some arbitrary k), it can generate the inequality 2*3^k >= 3 for all k >= 1. Where does this come from? I can follow how it adds this inequality to the hypothesis, but what is this, and how would I go about getting this?

This isn't just a generic problem by the way: I've looked at many examples, but I can't figure out what this is when dealing with inequalities and induction.
 
611
1
For your example I would first show: 3n ≥ 3n which is easier.
You said you can do the basic step. So let's move on to the induction.

To do the induction we suppose n, then we prove if n is true, n+1 is true.
So first suppose: 3n ≥ 3n. Then our goal is to show: 3n+1≥3(n+1)

To do that I would prove the following:
3n ≥ 3n ⇒ 3+3n ≥ 3(n+1)
Then i would prove: 3n+1≥3+3n for n>1
Putting these together: 3n+1≥3+3n≥3(n+1) This step shows our goal!
Thus by the principle of induction: 3n ≥ 3n for Natural n

Then you know: 3n ≥ 3n ⇒3n + 2 ≥ 3n or 3n ≥ 3n ⇒3*3*3n =3n+2 ≥ 3n from the properties of inequalities. It's hard to tell which of these you were trying to prove how you wrote it.
 
Last edited:
Thanks for the reply!

Sorry: I meant (3^n)+2

So is there no need for the extra inequality of 2*3^n >= 3? Or am I just missing something?
 
611
1
No need for the other inequality, which i think you typed incorrectly.
 

The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top