Proposition: 1*2*3+2*3*4+3*4*5+...+n(n+1)(n+2) = [n(n+1)(n+2)(n+3)]/4(adsbygoogle = window.adsbygoogle || []).push({});

Step (1): If n=1 then LHS (left hand side) = 6, and RHS = 6

Thus, P1 is true.

Step (2): If Pk is true then

k(k+1)(k+2) = [k(k+1)(k+2)(k+3)]/4

Now,

k(k+1)(k+2) + [k+1]([k+1]+1)([k+1]+2) = [k(k+1)(k+2)(k+3)]/4 + [k+1]([k+1]+1)([k+1]+2)

k(k+1)(k+2) +[k+1]([k+1]+1)([k+1]+2) = [k(k+1)(k+2)(k+3)]/4 + (k+1)(k+2)(k+3)

[k(k+1)(k+2)(k+3) + 4(k+1)(k+2)(k+3)]/4 ---> Common denominator - 4.

Then...what do i do? any clues? I have not proven my proposition, yet.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematical Induction

Loading...

Similar Threads for Mathematical Induction | Date |
---|---|

Hard mathematical induction question | Nov 19, 2011 |

Mathematical induction | Mar 9, 2010 |

Mathematical Induction | Jul 10, 2008 |

Mathematical induction | Jul 3, 2008 |

Mathematical Induction | Jun 17, 2008 |

**Physics Forums - The Fusion of Science and Community**