- #1

- 176

- 7

## Main Question or Discussion Point

3,8,17,24,49,58,117,?

what is the missing number ? Also give the pattern you followed.

what is the missing number ? Also give the pattern you followed.

- Thread starter lazyaditya
- Start date

- #1

- 176

- 7

3,8,17,24,49,58,117,?

what is the missing number ? Also give the pattern you followed.

what is the missing number ? Also give the pattern you followed.

- #2

jedishrfu

Mentor

- 11,280

- 4,741

Is this a homework assignment?

- #3

- 176

- 7

- #4

HallsofIvy

Science Advisor

Homework Helper

- 41,770

- 911

We can find that polynomial using the "difference". If we subtract each number in the sequence from the next we get the 7 differences 8- 3= 5, 17- 8= 9, 24- 17= 7, 49- 24= 25, 58- 49= 9, and 117- 58= 59. The second differences are 9- 5= 4, 7- 9= -2, 25- 7= 18, 9-25= -16, and 59- 9= 50. The third differences are -2- 4= -6, 18- (-2)= 20, -16- 18= -34, and 50- (-16)= 66. The fourth differences are 20- (-6)= 26, -34- 20= -54, 66- (-34)= 100. The fifth differences are -54- 26= -80 and 100- (-54)= 154. Finally, the sixth difference is 154- (-80)= 234.

Now, by "Newton's difference formula, the polynomial that, taking n to be 0 to 6, gives those values is

8+ 9n+ (4/2!)n(n- 1)- (6/3!)n(n-1)(n-2)+ (26/4!)n(n- 1)(n- 2)(n- 3)- (30/5!)n(n- 1)(n- 2)(n- 3)(n- 4)+ (184/6!)n(n- 1)(n- 2)(n- 3)(n- 4)(n- 5). Set n= 7 in that polynomial to determine the next number in that sequence.

- #5

jedishrfu

Mentor

- 11,280

- 4,741

Wow Halls impressive! I never knew about Newton's difference formula. I tried the differences to the 3rd order but still didn't see a pattern and began to think the sequence was wrong or from the Veritasium video something completely unexpected:

Last edited by a moderator:

- #6

pbuk

Science Advisor

Gold Member

- 1,239

- 266

3 + 5 = 8

8 x 2 + 1 = 17

17 + 7 = 24

24 x 2 + 1 = 49

49 + 9 = 58

58 x 2 + 1 = 117

117 + 11 = 128

- #7

pbuk

Science Advisor

Gold Member

- 1,239

- 266

It is implicit in this kind of problem that although there are an infinite number ofThere are of course, an infinite number of solutions.

As you well know HallsofIvy

- #8

jedishrfu

Mentor

- 11,280

- 4,741

Interesting solution, with alternating rules.It is implicit in this kind of problem that although there are an infinite number ofpotentialsolutions, if the problem is well-formed the unique correct solution can be found by applying Occam's razor.

As you well know HallsofIvy

Using Occam's razor is still an arbitrary choice for any problem with incomplete knowledge.

There may yet be an underlying pattern to the one you discovered that even more understandable using one rule instead of two.

The veratasium video highlights that premise where the rule was totally unexpected.

http://en.wikipedia.org/wiki/Occam_razor

Also could we drop the sarcasm from your post? Halls is a respected contributor and mentor to this forum and part of his responsibility is to direct students along the path of solution but not actually solve it.

- #9

jedishrfu

Mentor

- 11,280

- 4,741

3 + 5 = 8

8 x 2 + 1 = 17

17 + 7 = 24

24 x 2 + 1 = 49

49 + 9 = 58

58 x 2 + 1 = 117

117 + 11 = 128

How did you come by your solution?

What insight did you have or what method did you follow?

- #10

pbuk

Science Advisor

Gold Member

- 1,239

- 266

I don't understand what you mean by this.Using Occam's razor is still an arbitrary choice for any problem with incomplete knowledge.

Yes there may: Occam's razor is an heuristic that may guide one towards a better solution, not a deterministic test of truth.There may yet be an underlying pattern to the one you discovered that even more understandable using one rule instead of two.

I think that fitting an nth order polynomial to an n-term series is sarcasm (albeit of a subtle kind not appreciable by all); I was merely returning in kind.Also could we drop the sarcasm from your post?

Halls is a respected contributor and mentor to this forum and part of his responsibility is to direct students along the path of solution but not actually solve it.

- I hold HallsOfIvy in the highest respect, and would not have responded in that way to someone for whom that was not the case.

- In case you are still not getting the joke, directing students along the path of n-th degree polynomial fitting will not lead them to successful solutions to "find the next term" problems posed in exams or for recreational purposes.

- #11

jbriggs444

Science Advisor

Homework Helper

2019 Award

- 7,999

- 2,848

The same solution had occurred to me, but did not seem sufficiently simple, so I refrained from posting. There are a number of pairs where the first member is n and the second member was 2n+1. The final such pair involves large enough numbers to make the coincidence suspicious.How did you come by your solution?

What insight did you have or what method did you follow?

The pairs occur in a pattern (every odd numbered term is the first member of such a pair).

The first members of those pairs occur in a pattern (simple arithmetic sequence of differences).

- #12

jedishrfu

Mentor

- 11,280

- 4,741

As I looked at it I did see the odd numbers 5, 7, and 9 so perhaps that's all that needed to solve it. However, I didn't see the succ = pred*2 + 1 expression though.

Can you tell us how you came to your solution?

It would help the OP understand the methods of solution better. I didn't see the complete solution either so I too would benefit.

Thanks.

- #13

- 176

- 7

Thanks a lot :)

- #14

pbuk

Science Advisor

Gold Member

- 1,239

- 266

I can't think of any non-trivial "find the next number" problem where the solution can be found by polynomial fitting. Even in the "real" world, polynomial fitting may be useful for interpolation but is more or less guaranteed to fail when used for extrapolation.Personally, I felt it was complex but it brought to light another way to solve these kinds of problems.

Similar to jbriggs444, I saw 48 = 24 x 2 + 1 and 117 = 58 x 2 + 1 on first inspection. I then took diferrences between successive terms and the 5,7 and 9 pattern became clear. I juggled these two patterns mentally for a while and couldn't come up with anything to unify them..As I looked at it I did see the odd numbers 5, 7, and 9 so perhaps that's all that needed to solve it. However, I didn't see the succ = pred*2 + 1 expression though.

Can you tell us how you came to your solution?

It would help the OP understand the methods of solution better. I didn't see the complete solution either so I too would benefit.

In terms of useful general methods of solution, looking at differences between terms is always the place to start. When you are looking at this:

Code:

```
3 8 17 24 49 58 117
5 9 7 25 9 59
```

I would stress that, like jbriggs444, I don't think this is the complete solution: if it is, it is rather unsatisfactory.

- #15

jedishrfu

Mentor

- 11,280

- 4,741

So you did the same analysis that we did and had a flash of insight.

WHats interesting is that while we saw the odd number progression we ignored it while we searched for a more inclusive algorithm.

Its a classic 'cant see the forest for the trees' problem we only needed the odd number progression to answer the problem.

It reminds me of a famous code breaking movie where the protagonist was trying to crack a Russian coded transmission. He used every sort of codebreakers trick but came up empty handed. The signal sounded like beads in a bottle sloshing around. His insight came when he gave up for the night and sat down with his infant son and shook the baby rattle. The code was the shakng of the rattle not the more intricate sounds of the beads shaking about.

And the movie is:

http://en.wikipedia.org/wiki/Sebastian_(1968_film)

now showing on youtube at your earliest convenience:

WHats interesting is that while we saw the odd number progression we ignored it while we searched for a more inclusive algorithm.

Its a classic 'cant see the forest for the trees' problem we only needed the odd number progression to answer the problem.

It reminds me of a famous code breaking movie where the protagonist was trying to crack a Russian coded transmission. He used every sort of codebreakers trick but came up empty handed. The signal sounded like beads in a bottle sloshing around. His insight came when he gave up for the night and sat down with his infant son and shook the baby rattle. The code was the shakng of the rattle not the more intricate sounds of the beads shaking about.

And the movie is:

http://en.wikipedia.org/wiki/Sebastian_(1968_film)

now showing on youtube at your earliest convenience:

Last edited by a moderator:

- #16

- 32,399

- 4,906

Model theory might help here. It allows models for functions to be compared in a way that penalises according to the number of arbitrary parameters introduced. Perhaps one could use a variant which measures the algorithmic complexity.The same solution had occurred to me, but did not seem sufficiently simple, so I refrained from posting. There are a number of pairs where the first member is n and the second member was 2n+1. The final such pair involves large enough numbers to make the coincidence suspicious.

The pairs occur in a pattern (every odd numbered term is the first member of such a pair).

The first members of those pairs occur in a pattern (simple arithmetic sequence of differences).

- Replies
- 4

- Views
- 2K

- Replies
- 3

- Views
- 1K

- Last Post

- Replies
- 1

- Views
- 1K

- Replies
- 6

- Views
- 2K

- Last Post

- Replies
- 5

- Views
- 3K

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 17

- Views
- 760