# Matrix Derivatives

I have encountered some problems that have to do with the derivatives of matrices... I have NO experience with these and had little luck finding any theorems... I looked on wikipedia for some help and found a few definitions, but I am still unclear about how this is proven or attained... here is an example from wikipedia:

d tr(AXB)/ dX = A^T B^T

my question is... how are they getting that?!? I seem to be having a big mind block with this..

Any theorems about how to take derivatives of vectors or matrices would be great!

any help would be appreciated!

Related Calculus and Beyond Homework Help News on Phys.org
Dick
Homework Helper
Think indices. tr(AXB)=A_ij*X_jk*B_ki. The lm component of the derivative matrix is the derivative of that with respect to X_lm. The only terms that contribute to that are terms where j=l and k=m. Removing the X_lm since it is differentiated leaves A_il*B_mi. That's (A^T)_li*(B^T)_im=(A^T*B^T)_lm. So the lm component of d(tr(AXB))/dX is the same as (A^T*B^T). So they are equal as matrices.

hmmm.. if they are defined as square matrices, the tr(AXB) would be given by A_ii*X_ii*B_ii so that tr(AXB) is a square matrix whose diagonal elements are all AXB correct? If not, there is definitely something here that I am missing...

Dick