how would i find something like:(adsbygoogle = window.adsbygoogle || []).push({});

[tex] max[\frac{x}{2} + cos(x)][/tex] where [tex] x\epsilon [0,\pi][/tex] and ...

[tex] max[\frac{x}{2} + cos(x)][/tex] where [tex] x\epsilon [-\pi,0][/tex]

-------------------------------------------

here's what i did for [tex] max[\frac{x}{2} + cos(x)][/tex] where [tex] x\epsilon [0,\pi][/tex]:

first we need critical points: so f'(x) = 0

so 1/2 - sin(x) = 0 , so [tex] x=\frac{\pi}{6} and \frac{5}{6}\pi[/tex]

maxf(x) = max{f(0), f(pi/6), f(5/6pi), f(pi)}

f(0) = 1/2(0) + cos(0) = 1

f(pi/6) = 1/2(pi/6) + cos(pi/6) = pi/12 + [tex]\sqrt\frac{3}{2}[/tex]

f(5/6pi) = 5/12pi + cos(5/6pi) = 5/12pi - [tex]\sqrt\frac{3}{2}[/tex]

f(pi) = pi/2 - 1

so max is at f(pi/6) .. i.e pi/12 + [tex]\sqrt\frac{3}{2}[/tex]

---------------------------

now for [tex] max[\frac{x}{2} + cos(x)][/tex] where [tex] x\epsilon [-\pi,0][/tex]

critical points are again [tex] x=\frac{\pi}{6} and \frac{5}{6}\pi[/tex], but these both lie outside the range: [tex][-\pi,0][/tex] so we only take into consideration -pi and 0:

so f(-pi) = -pi/2 - 1

f(0) = 1

so the max is at point f(0).. i.e 1..

........................................

are these both correct? although seeming a bit obvious.. or do i need to show the final answer differently?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Max and min of a function

Loading...

Similar Threads - function | Date |
---|---|

I Trying to get an explicit function(ish) | Today at 5:39 PM |

B Beginner function question | Feb 17, 2018 |

I Correct notation for some functional expressions | Feb 17, 2018 |

I Question about the Divisor Function/Sums and Project Euler | Feb 16, 2018 |

B Behavior of polynomial functions at their zeros | Feb 15, 2018 |

**Physics Forums - The Fusion of Science and Community**