(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find max/min of x^2+y^2+z^2 given x^4+y^4+z^4=3

2. Relevant equations

Use of gradient vectors related by LaGrange Multiplier

3. The attempt at a solution

[tex]\begin{gathered}

f\left( {x,y,z} \right) = {x^2} + {y^2} + {z^2};g\left( {x,y,z} \right) = {x^4} + {y^4} + {z^4} - 3 = 0 \\

\vec \nabla f = \left\langle {2x,2y,2z} \right\rangle ;\vec \nabla g = \left\langle {4{x^3},4{y^3},4{z^3}} \right\rangle \\

\left\langle {2x,2y,2z} \right\rangle = \lambda \left\langle {4{x^3},4{y^3},4{z^3}} \right\rangle \\

2{x^2} = 2{y^2} = 2{z^2} \to x = \pm y = \pm z \\

3{x^4} - 3 = 0 \to {x^4} = 1 \to x = \pm 1 \to y = \pm 1,z = \pm 1 \\

\max = f\left( {1,1,1} \right) = f\left( {1,1, - 1} \right) = f\left( {1, - 1,1} \right) = f\left( {1, - 1, - 1} \right) = \\

f\left( { - 1,1,1} \right) = f\left( { - 1,1, - 1} \right) = f\left( { - 1, - 1,1} \right) = f\left( { - 1, - 1, - 1} \right) = 3 \\

\end{gathered}[/tex]

So I found the maximum but does the minimum exist?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Max/min with constraints

**Physics Forums | Science Articles, Homework Help, Discussion**