1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Maximize area

  1. Feb 3, 2004 #1
    Here is the question

    You are planning to close off a corner of the first quadrant with a line segment 20units long running from (a,0) to (0,b). Show that the area of the triangle enclosed by the segment is largest when a = b.
     
  2. jcsd
  3. Feb 4, 2004 #2
    AREA=1/2*a*b

    And also Apply the Distance formula to find the relation b/w a and b eliminate one from the two equations and use calculus to find the max of AREA
     
  4. Feb 4, 2004 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Or use "Lagrange multiplier" method:

    To maximize (1/2)ab subject to the requirement that x/a+ y/b= 1 (the equation of the line from (a,0) to (0,b)) we must have
    The vector (1/2)b i+ (1/2)a j (the grad of (1/2)ab) parallel to the vector (1/a)i+ (1/b)j (the grad of x/a+ y/b) (in an "ab" coordinate system of course).
    That is (1/2)b= λ(1/a) and (1/2)a= λ(1/b) where λ is the Lagrange multiplier. Dividing the first equation by the second to eliminate λ, b/a= a/b or a2= b2 so a= b or a= -b. Since this is in the first quadrant, a= b.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?