- #1
- 135
- 1
In a non-traditional type of derivation of Maxwell's speed distribution for gases,I happen to face the following problem:
They say since P(v_x),P(v_y),P(v_z) are independent,so the combined probability wil be P=P(v_x)P(v_y)P(v_z).
This much is OK.Then they say the only function having the property f(a+b+c)=f(a)f(b)f(c)
is an exponential function.So, consider the P(v_x) as to have exponential dependence P(v_x)=K exp[-L*(v_x)^2].This makes me uncomfortable.Did we have P=P(v_x+P_y+P_z)?I am a bit new to statistical ideas,so really cannot be sure when we said the joint probability is P,it means P=P(v_x+P_y+P_z).
Please help.
They say since P(v_x),P(v_y),P(v_z) are independent,so the combined probability wil be P=P(v_x)P(v_y)P(v_z).
This much is OK.Then they say the only function having the property f(a+b+c)=f(a)f(b)f(c)
is an exponential function.So, consider the P(v_x) as to have exponential dependence P(v_x)=K exp[-L*(v_x)^2].This makes me uncomfortable.Did we have P=P(v_x+P_y+P_z)?I am a bit new to statistical ideas,so really cannot be sure when we said the joint probability is P,it means P=P(v_x+P_y+P_z).
Please help.