1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: MCAT Physics Question: Mechanics III

  1. Mar 12, 2012 #1
    1. The problem statement, all variables and given/known data

    Basically, Alice is pushing her brother Jeff on a toboggan at an ice skating rink that is flat except for a ramp that has an incline of 30 degrees

    Alice weighs: 60 kg
    Jeff weighs: 28 kg
    Toboggan weighs: 2 kg

    They decide to push Jeff and the toboggan up the ramp. They start from rest 10 m from the incline and she pushes him with a force that varies with the distance [the book has a figure of Force (N) vs. Distance (m)]. You can see the diagram if you google the question below.

    http://books.google.ca/books?id=HCU... she lets go just before the incline?&f=false

    Jeff goes speeding up the incline with a velocity of 2 m/s

    The Question is:

    "How much work does Alice do from the moment she begins to push Jeff 10 m from the incline until she lets go just before the incline?"

    A) 60J
    B) 75J
    C) 0J
    D) There is not enough information to answer the question

    2. Relevant equations

    I know how to solve the problem, I realize Figure 1: Force vs. Distance graph will give me the amount of work applied if I add the area under the graph. The problem is the graph doesn't show the Force and I am not sure how to solve for it.


    Vf^2=Vi^2 +2ad

    a= Vf^2/d

    3. The attempt at a solution

    I figure the mass is the Toboggan + Jeff.

    But solving for acceleration is the problem I am having. I know the initial velocity will equal to zero, but the velocity during the distance traveled I cannot figure out

    The answer they give for Force = 7.5 N

    Any help would be great,

    Thank you
  2. jcsd
  3. Mar 12, 2012 #2
    I'm not any expert but I think using the Work Energy Theorem will quickly give you an answer for work. I think your mass of Jeff + Toboggan was correct.

    Work = KE[itex]_{f}[/itex]-KE[itex]_{i}[/itex] = [itex]\frac{1}{2}[/itex]mv[itex]_{f}[/itex][itex]^{2}[/itex]-[itex]\frac{1}{2}[/itex]mv[itex]_{i}[/itex][itex]^{2}[/itex]

    Hope this helps. Good luck on the MCAT!

    Someone correct me if I'm wrong.
  4. Mar 12, 2012 #3


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You can't use your kinematic equation for constant acceleration when the force, and hence the acceleration, is not constant for the entire 10 m displacement. The problem is more easily solved using the work-energy theorem. Are you familiar with it?
  5. Mar 13, 2012 #4

    W total = ΔKE

    so would it end up being along the lines of this?

    W total = ΔKE

    Fdcosθ= 1/2mv2f - 1/2mv2i

    (10)F= 1/2(30)(2)2

    F= 6 N?
  6. Mar 13, 2012 #5
    I don't believe force has anything to do with this problem?

    It only asks for work, I got an answer of 60.0 J.
  7. Mar 13, 2012 #6


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You are incorrectly assuming that W = Fd cosθ. That is for constant force only. Go back to your original attempt where you said that
    Since the area under the graph is 1/2(30)(2)2 = 60 J, that's the work done by Alice, as whiskeySierra has also noted. Now apparently there is a part b to this problem that asks you to find the peak value of the Force. You should be able to find Fmax knowing that the area under the 'curve' is 60 J.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook