The statement of the mean value inequality (MVI) is as follows:(adsbygoogle = window.adsbygoogle || []).push({});

"Let A be an open convex subset of R^n and let f:A-->R^m be continuously differentiable and such that ||Df(x)(y)||<=M||y|| for all x in A and y in R^n (i.e. the family

[itex](Df(x))_{x \in A}[/itex] is uniformly lipschitz of constant M on R^n). Then for any x_1, x_2 in A, we have ||f(x_2)-f(x_1)||<=M||x_2-x_1||."

If m=1, then this is just the mean value theorem (MVT) plus the triangle inequality. But otherwise, the MVT applied to each component of f separately only leads ||f(x_2)-f(x_1)||<=mM||x_2-x_1||. So the proof suggested by the book I'm reading is that we write f(x_2)-f(x_1) using the fondamental theorem of calculus (FTC) as

[tex]f(x_2)-f(x_1)=\int_0^1\frac{d}{dt}f(x_1+t(x_2-x_1))dt=\int_0^1Df(x_1+t(x_2-x_1))(x_2-x_1)dt[/tex]

and then use the triangle inequality for integrals to get the result.

But notice that the integrand is an element of R^m. So by the above, they certainly mean

[tex]f(x_2)-f(x_1)=\sum_{j=1}^me_j\int_0^1Df_j(x_1+t(x_2-x_1))(x_2-x_1)dt[/tex]

which does not, to my knowledge, allows for a better conclusion than ||f(x_2)-f(x_1)||<=mM||x_2-x_1||.

Am I mistaken?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mean value inequality?

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**