Hello all,(adsbygoogle = window.adsbygoogle || []).push({});

I have some difficulty in determining the measurability in product space. Suppose the product space is [itex]T \times \Omega [/itex] equipped with [itex] \mathcal{T} \otimes \mathcal{F}[/itex] where [itex] ( T , \mathcal{T} , \mu ), ( \Omega , \mathcal{F} , P)[/itex] are themselves measurable spaces.

Now, if there exists a set [itex] T_0 [/itex] in [itex] T [/itex] with [itex] \mu(T_{0}^{c}) =0[/itex] and, for each fixed [itex] t \in T_0 [/itex], a property holds almost everywhere in [itex] \Omega [/itex], so this means there exists a [itex] \Omega_{t} [/itex] such that [itex] P(\Omega_{t}^{c}) = 0 [/itex] and that property holds on this set.

How can we conclude that the property will holds almost everywhere in the product space [itex]T \times \Omega [/itex]? Are they saying the set [itex]T_0 \times\Omega_{t} [/itex] is measurable?

Or in other words, when does the measurability hold if the second set [itex]\Omega_{t} [/itex] is a function of the first set [itex]T_0 [/itex]?

Thanks very much.

Wayne

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Measurability in Product Space

**Physics Forums | Science Articles, Homework Help, Discussion**