- #1
- 17
- 0
Problem: [tex]f_{n}\rightarrow f [/tex] in measure, [tex]\mu(\left\{f_{n}>h\right\})\leq A[/tex]
Prove that [tex]\mu(\left\{f>h\right\})\leq A[/tex].
My Work:
Suppose not, then [tex]\mu(\left\{f>h\right\}) > A[/tex].
From the triangle inequality for measures we get
[tex]\mu(\left\{f>h\right\}) = \mu(\left\{f-f_{n}+f_{n}>h\right\})
\leq\mu(\left\{f-f_{n}>0\right\}) + \mu(\left\{f_{n}>h\right\}) [/tex].
So [tex] A<\mu(\left\{f-f_{n}>0\right\}) + \mu(\left\{f_{n}>h\right\})
\leq\mu(\left\{f-f_{n}>0\right\}) + A [/tex].
Taking limits on both sides (n->00)yields:
[tex] A < 0 + A \Rightarrow\Leftarrow[/tex].
I do not have much of a background for analysis, so any suggestions are welcome.
Prove that [tex]\mu(\left\{f>h\right\})\leq A[/tex].
My Work:
Suppose not, then [tex]\mu(\left\{f>h\right\}) > A[/tex].
From the triangle inequality for measures we get
[tex]\mu(\left\{f>h\right\}) = \mu(\left\{f-f_{n}+f_{n}>h\right\})
\leq\mu(\left\{f-f_{n}>0\right\}) + \mu(\left\{f_{n}>h\right\}) [/tex].
So [tex] A<\mu(\left\{f-f_{n}>0\right\}) + \mu(\left\{f_{n}>h\right\})
\leq\mu(\left\{f-f_{n}>0\right\}) + A [/tex].
Taking limits on both sides (n->00)yields:
[tex] A < 0 + A \Rightarrow\Leftarrow[/tex].
I do not have much of a background for analysis, so any suggestions are welcome.