The following question is about an experiment with the conical pendulum.(adsbygoogle = window.adsbygoogle || []).push({});

I have measured the length [itex] l = 43\,cm [/itex] the radius [itex] r = 10\,cm [/itex], I have 3 measurement of the period with the same radius, where the measurements are

[tex] T= [1.288, 1.285, 1.301] s[/tex]

The uncertainties of the measurements are [itex] \Delta l = \pm 1\,cm[/itex], [itex]\Delta r = \pm 1\,cm [/itex] and [itex] \Delta T = \pm 0.02\,s [/itex].

I want to calculate the uncertainty in the measurement og [itex] g [/itex], when

[tex] g_i=4\pi^2\frac{\sqrt{l^2-r^2}}{T_i^2} [/tex]

Can I calculate the uncertainty [itex] \Delta g [/itex] by

[tex] \Delta g = 4\pi^2\frac{\sqrt{(l+\Delta l)^2-(r-\Delta r)^2}}{(T_i-\Delta T)^2} - g_i [/tex]

Where the expression [itex] 4\pi^2\left(\sqrt{(l+\Delta l)^2-(r-\Delta r)^2}\right)/(T_i-\Delta T)^2 [/itex] is the worst case scenario of the measuring [itex] g [/itex]. Is that correct?

If that is how I can calculate the uncertainty in [itex] g [/itex], is the relative uncertainty then

[tex] \frac{\Delta g}{g_i} \qquad \mathrm{or} \qquad \frac{\Delta g}{\overline{g}} [/tex]

Where [itex] \overline{g} [/itex] is the mean value. Which one is the correct one? The first expression has a relative uncertainty for each measurement.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Measurement uncertainty

Loading...

Similar Threads for Measurement uncertainty | Date |
---|---|

I Combined measurement uncertainty for mass computation | Apr 1, 2016 |

I Uncertainty in Scale Measurement | Mar 23, 2016 |

Measurement uncertainties | Nov 11, 2014 |

Estimating upper bound from measurements with uncertainties | Jan 21, 2014 |

Uncertainty in group of measurements, given single measurement uncertainty. | Jul 21, 2012 |

**Physics Forums - The Fusion of Science and Community**