- #1
- 5
- 0
A particle with mass m is at rest. A second one, identical to the last one hits the first one. Show that in the case of a perfectly elastic collision (Q=0) the directions of the two particles make a right angle.
You can't assume that both final velocities will be equal. Here's what I've got from using: 1. the conservation of linear momentum. 2. The conservation of kinetic energy (Q=0). 3. Scalar product between the initial velocities.
v=u1cosα + u2 cosβ
u1 sinα = u2 sinβ
v2=u12 + u22
cos(α+β)=(u12 cosα cosβ + u22 sinα sinβ) / (u1 u2)
And hell, I really can't solve this system...
You can't assume that both final velocities will be equal. Here's what I've got from using: 1. the conservation of linear momentum. 2. The conservation of kinetic energy (Q=0). 3. Scalar product between the initial velocities.
v=u1cosα + u2 cosβ
u1 sinα = u2 sinβ
v2=u12 + u22
cos(α+β)=(u12 cosα cosβ + u22 sinα sinβ) / (u1 u2)
And hell, I really can't solve this system...
Last edited: