- #1
- 339
- 0
i don't get this what he wrote...
the internal force [tex]\vec{F_{ij}}[/tex] between two particles is [tex]\vec{F_{ij}}=\nabla_{i} V_{ij}=\nabla_{ij} V_{ij}=-\nabla_{j} V_{ij}[/tex]
where the subscript below [tex]\nabla_{k}[/tex]implies the differentitaion with respect to components of [tex]\vec{r_{k}}[/tex]
i can't get how [tex]\vec{F_{ij}}=\nabla_{i} V_{ij} or \vec{F_{ij}}=-\nabla_{j} V_{ij}[/tex]
the potential energy is dependent on the relative distances between the particles hence there is no meaning to the above two equalities
the internal force [tex]\vec{F_{ij}}[/tex] between two particles is [tex]\vec{F_{ij}}=\nabla_{i} V_{ij}=\nabla_{ij} V_{ij}=-\nabla_{j} V_{ij}[/tex]
where the subscript below [tex]\nabla_{k}[/tex]implies the differentitaion with respect to components of [tex]\vec{r_{k}}[/tex]
i can't get how [tex]\vec{F_{ij}}=\nabla_{i} V_{ij} or \vec{F_{ij}}=-\nabla_{j} V_{ij}[/tex]
the potential energy is dependent on the relative distances between the particles hence there is no meaning to the above two equalities