- #1

- 4

- 0

A flywheel initially rotating at a speed of 800 rev/min, is brought to rest with uniform angular deceleration in 6 secs.

a. How many revolutions does the flywheel make before coming to rest?

b. Determine the magnitude and direction of the resultant linear acceleration of a point A on the flywheel 0.2s before coming to rest. Draw a vector diagram showing the magnitude and direction of the resultant linear acceleration and its radial and tangentail components. A is positioned at a fixed radius of 160mm from the axis of rotation.

c. At what time will both the radial and tangential components of acceleration be equal in magnitude.