This semester i'm taking "Introduction to Algebraic Curves" course. Up to now, the only problems i have with this course are the notion of meromorphic(and holomorphic) differentials, and coordinate charts. I'm good with the algebraic ideas. Here is one question from the book we are studying:(adsbygoogle = window.adsbygoogle || []).push({});

Let w be a meromorphic differential on a Riemann surface C. Show that we can choose an appropriate coordinate chart so that w = (z^u)dz, u is an integer, in some neighborhood of a pole. Prove also that this integer u is independent of the coordinate chart selected.

Actually i could prove the uniqueness of the number u for the function version of the statement(in a nbd. of a pole, a meromorphic function f on a Riemann surface can be expressed as f = (z^u')g(z), where u' is an integer, g(z) is a holomorphic function and z(q)=0 for this pole p). But i have trouble with proving the statement for the meromorphic differentials.

I know that a meromorphic differential f dg is represented on the coordinate chart

phi_i :U_i -> V_i by the meromorphic function f((phi_i)^(-1)) g((phi_i)^(-1)) but don't know how to use it for this question.

Instead i tried to prove the result as follows:

Let w be a meromorphic differential which have the local representation

w = p(z)dz = ((a_n) z^n + (a_(n+1)) z^(n+1) + ...)dz, where a_n is non-zero and n is a negative integer. Then w has a pole of order n at the point q. Let z = f(w) be a mapping such that f(0)=0 and f'(0) is nonzero.Then we get gbar(w) = g(z)dz = g(f(w))(df/dw). So,

lim (w->0) (w^(-n))*gbar(w) = lim (w/f(w))^(-n)*[f(w)^(-n) g(f(w))(df/dw)

= f'(0)* lim (z->0) (z^(-n)) p(z).

Here f'(0) is nonzero by construction, and thus the last expression is finite and non-zero when so is lim (z^(-n)) p(z) (this can be proved easily). So this number n, aka u in the original quesion is independent of the local chart.

Does this prove the statement? Is there another good way of showing the desired result? Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Meromorphic differential

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**